

Preface
  Exponential growth of data volume, steady drop in storage costs,

and rapid increase in storage capacity
  Inadequacy of the sequential processing paradigm

  Example: Assuming a data rate of 1 terabyte/sec, reading through a
petabyte database will take over 10 days

  Parallel machines in the past, and parallel facilities in today’s
commercial DBMS

  Importance of understanding high-performance and parallel
database processing systems

  Grid as global and distributed data centres
  New application domains (data-intensive applications): data

warehousing and online analytic processing, and data mining

Table of Contents
1.  Introduction
2.  Analytical Models
3.  Parallel Search
4.  Parallel Sort and Group By
5.  Parallel Join
6.  Parallel GroupBy-Join
7.  Parallel Indexing
8.  Parallel Universal Quantification - Collection

Join Queries
9.  Parallel Query Scheduling and Optimization
10.  Transactions in Distributed and Grid Databases
11.  Grid Concurrency Control
12.  Grid Transaction Atomicity and Durability
13.  Replica Management in Grids
14.  Grid Atomic Commitment in Replicated Data
15.  Parallel Online Analytic Processing (OLAP) and

Business Intelligence
16.  Parallel Data Mining - Association Rules and

Sequential Patterns
17.  Parallel Clustering and Classification

Table of Contents
1.  Introduction
2.  Analytical Models
3.  Parallel Search
4.  Parallel Sort and Group By
5.  Parallel Join
6.  Parallel GroupBy-Join
7.  Parallel Indexing
8.  Parallel Universal Quantification - Collection

Join Queries
9.  Parallel Query Scheduling and Optimization
10.  Transactions in Distributed and Grid Databases
11.  Grid Concurrency Control
12.  Grid Transaction Atomicity and Durability
13.  Replica Management in Grids
14.  Grid Atomic Commitment in Replicated Data
15.  Parallel Online Analytic Processing (OLAP) and

Business Intelligence
16.  Parallel Data Mining - Association Rules and

Sequential Patterns
17.  Parallel Clustering and Classification

Part I:!
Introduction!

Table of Contents
1.  Introduction
2.  Analytical Models
3.  Parallel Search
4.  Parallel Sort and Group By
5.  Parallel Join
6.  Parallel GroupBy-Join
7.  Parallel Indexing
8.  Parallel Universal Quantification - Collection

Join Queries
9.  Parallel Query Scheduling and Optimization
10.  Transactions in Distributed and Grid Databases
11.  Grid Concurrency Control
12.  Grid Transaction Atomicity and Durability
13.  Replica Management in Grids
14.  Grid Atomic Commitment in Replicated Data
15.  Parallel Online Analytic Processing (OLAP) and

Business Intelligence
16.  Parallel Data Mining - Association Rules and

Sequential Patterns
17.  Parallel Clustering and Classification

Part II:!
Basic Query Parallelism!

Table of Contents
1.  Introduction
2.  Analytical Models
3.  Parallel Search
4.  Parallel Sort and Group By
5.  Parallel Join
6.  Parallel GroupBy-Join
7.  Parallel Indexing
8.  Parallel Universal Quantification - Collection

Join Queries
9.  Parallel Query Scheduling and Optimization
10.  Transactions in Distributed and Grid Databases
11.  Grid Concurrency Control
12.  Grid Transaction Atomicity and Durability
13.  Replica Management in Grids
14.  Grid Atomic Commitment in Replicated Data
15.  Parallel Online Analytic Processing (OLAP) and

Business Intelligence
16.  Parallel Data Mining - Association Rules and

Sequential Patterns
17.  Parallel Clustering and Classification

Part III:!
Advanced Parallel
Query Processing!

Table of Contents
1.  Introduction
2.  Analytical Models
3.  Parallel Search
4.  Parallel Sort and Group By
5.  Parallel Join
6.  Parallel GroupBy-Join
7.  Parallel Indexing
8.  Parallel Universal Quantification - Collection

Join Queries
9.  Parallel Query Scheduling and Optimization
10.  Transactions in Distributed and Grid Databases
11.  Grid Concurrency Control
12.  Grid Transaction Atomicity and Durability
13.  Replica Management in Grids
14.  Grid Atomic Commitment in Replicated Data
15.  Parallel Online Analytic Processing (OLAP) and

Business Intelligence
16.  Parallel Data Mining - Association Rules and

Sequential Patterns
17.  Parallel Clustering and Classification

Part IV:!
Grid Databases!

Table of Contents
1.  Introduction
2.  Analytical Models
3.  Parallel Search
4.  Parallel Sort and Group By
5.  Parallel Join
6.  Parallel GroupBy-Join
7.  Parallel Indexing
8.  Parallel Universal Quantification - Collection

Join Queries
9.  Parallel Query Scheduling and Optimization
10.  Transactions in Distributed and Grid Databases
11.  Grid Concurrency Control
12.  Grid Transaction Atomicity and Durability
13.  Replica Management in Grids
14.  Grid Atomic Commitment in Replicated Data
15.  Parallel Online Analytic Processing (OLAP) and

Business Intelligence
16.  Parallel Data Mining - Association Rules and

Sequential Patterns
17.  Parallel Clustering and Classification

Part V:!
Other Data-Intensive

Applications!

Let’s go to Chapter 1…

Chapter 1
Introduction

1.1 A Brief Overview - Parallel Databases and Grid
Databases

1.2 Parallel Query Processing: Motivations
1.3 Parallel Query Processing: Objectives
1.4 Forms of Parallelism
1.5 Parallel Database Architectures
1.6 Grid Database Architecture
1.7 Structure of this Book
1.8 Summary
1.9 Bibliographical Notes
1.10 Exercises

1.1. A Brief Overview
  Moore’s Law: number of processors will double every 18-24

months
  CPU performance would increase by 50-60% per year
  Mechanical delays restrict the advancement of disk access time

or disk throughput (8-10% only)
  Disk capacity also increases at a much higher rate
  I/O becomes a bottleneck
  Hence, motivates parallel database research

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Database Systems:
  Single administrative domain
  Homogeneous working environment
  Close proximity of data storage
  Multiple processors

  Grid Database Systems:
  Heterogeneous collaboration of resources
  Provide seamless access to geographically distributed data sources

1.1. A Brief Overview (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.2. Motivations
  An example:

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  What is parallel processing, and why not just use a faster
computer ?

  Even fast computers have speed limitations
  Limited by speed of light
  Other hardware limitations

  Parallel processing divides a large task into smaller subtasks
  Database processing works well with parallelism (coarse-grained

parallelism)
  Lesser complexity but need to work with a large volume of data

1.2. Motivations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.3. Objectives
  The primary objective of parallel database processing is to gain

performance improvement
  Two main measures:

  Throughput: the number of tasks that can be completed within a
given time interval

  Response time: the amount of time it takes to complete a single
task from the time it is submitted

  Metrics:
  Speed up
  Scale up

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.3. Objectives
  The primary objective of parallel database processing is to gain

performance improvement
  Two main measures:

  Throughput: the number of tasks that can be completed within a
given time interval

  Response time: the amount of time it takes to complete a single
task from the time it is submitted

  Metrics:
  Speed up
  Scale up

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Speed up
  Performance improvement gained because of extra processing elements

added
  Running a given task in less time by increasing the degree of parallelism

  Linear speed up: performance improvement growing linearly with
additional resources

  Superlinear speed up
  Sublinear speed up

1.3. Objectives (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Scale up
  Handling of larger tasks by increasing the degree of parallelism
  The ability to process larger tasks in the same amount of time by providing

more resources.

  Linear scale up: the ability to maintain the same level of
performance when both the workload and the resources are
proportionally added

  Transactional scale up
  Data scale up

1.3. Objectives (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Transaction scale up
  The increase in the rate at which the transactions are processed
  The size of the database may also increase proportionally to the

transactions’ arrival rate
  N-times as many users are submitting N-times as many requests or

transactions against an N-times larger database
  Relevant to transaction processing systems where the transactions are

small updates

  Data scale up
  The increase in size of the database, and the task is a large job who

runtime depends on the size of the database (e.g. sorting)
  Typically found in online analytical processing (OLAP)

1.3. Objectives (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Obstacles
  Start-up and Consolidation costs,
  Interference and Communication, and
  Skew

1.3. Objectives (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Start-up and Consolidation
  Start up: initiation of multiple processes
  Consolidation: the cost for collecting results obtained from each processor

by a host processor

1.3. Objectives (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Interference and Communication
  Interference: competing to access shared resources
  Communication: one process communicating with other processes, and

often one has to wait for others to be ready for communication (i.e. waiting
time).

1.3. Objectives (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Skew
  Unevenness of workload
  Load balancing is one of the critical factors to achieve linear speed up

1.3. Objectives (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.4. Forms of Parallelism
  Forms of parallelism for database processing:

  Interquery parallelism
  Intraquery parallelism
  Interoperation parallelism
  Intraoperation parallelism
  Mixed parallelism

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Interquery Parallelism
  “Parallelism among queries”
  Different queries or transactions are executed in parallel with one another
  Main aim: scaling up transaction processing systems

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Intraquery Parallelism
  “Parallelism within a query”
  Execution of a single query in parallel on multiple processors and disks
  Main aim: speeding up long-running queries

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Execution of a single query can be parallelized in two ways:

  Intraoperation parallelism: Speeding up the processing of a query by
parallelizing the execution of each individual operation (e.g. parallel sort,
parallel search, etc)

  Interoperation parallelism: Speeding up the processing of a query by
executing in parallel different operations in a query expression (e.g.
simultaneous sorting or searching)

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Intraoperation Parallelism
  “Partitioned parallelism”
  Parallelism due to the data

being partitioned
  Since the number of records

in a table can be large, the
degree of parallelism is
potentially enourmous

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Interoperation parallelism: Parallelism created by concurrently
executing different operations within the same query or transaction

  Pipeline parallelism
  Independent parallelism

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Pipeline Parallelism
  Output record of one operation

A are consumed by a second
operation B, even before the
first operation has produced
the entire set of records in its
output

  Multiple operations form some
sort of assembly line to
manufacture the query results

  Useful with a small number of
processors, but does not scale
up well

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Independent Parallelism
  Operations in a query that do

not depend on one another are
executed in parallel

  Does not provide a high
degree of parallelism

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Mixed Parallelism
  In practice, a mixture of all available parallelism forms is used.

1.4. Forms of Parallelism (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.5. Parallel Database Architectures
  Parallel computers are no longer a monopoly of supercomputers
  Parallel computers are available in many forms:

  Shared-memory architecture
  Shared-disk architecture
  Shared-nothing architecture
  Shared-something architecture

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Shared-Memory and Shared-Disk Architectures
  Shared-Memory: all processors share a common main memory and

secondary memory
  Load balancing is relatively easy to achieve, but suffer from memory and

bus contention
  Shared-Disk: all processors, each of which has its own local main memory,

share the disks

1.5. Parallel Database Architectures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Shared-Nothing Architecture
  Each processor has its own local main memory and disks
  Load balancing becomes difficult

1.5. Parallel Database Architectures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Shared-Something Architecture
  A mixture of shared-memory and shared-nothing architectures
  Each node is a shared-memory architecture connected to an

interconnection network ala shared-nothing architecture

1.5. Parallel Database Architectures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Interconnection Networks
  Bus, Mesh, Hypercube

1.5. Parallel Database Architectures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.6. Grid Database Architecture
  Wide geographical area, autonomous and heterogeneous

environment
  Grid services (Meta-repository services, look-up services, replica

management services, …)

  Grid middleware

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.7. Structure of the book
  Part I: Introduction and analytical models
  Parts II and III: Parallel query processing, including parallel

algorithms and methods for all important database processing
operations

  Part IV: Grid transaction management, covering the ACID
properties of transaction as well as replication in Grid

  Part V: Parallelism of other data-intensive applications (OLAP
and data mining)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

1.8. Summary
  Why, What, and How of parallel query processing:

  Why is parallelism necessary in database processing?

  What can be achieved by parallelism in database processing?

  How parallelism performed in database processing?

  What facilities of parallel computing can be used?

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Continue to Chapter 2…

Chapter 2
Analytical Models

2.1 Cost Models
2.2 Cost Notations
2.3 Skew Model
2.4 Basic Operations in Parallel Databases
2.5 Summary
2.6 Bibliographical Notes
2.7 Exercises

2.1. Cost Models
  Cost equations/formulas to calculate the elapsed time of a query

using a particular parallel algorithm for processing
  Composed of variables to be substituted with specific values at

runtime of the query
  Although cost models may be used to estimate the performance

of a query, the primary intention is to use them to describe the
process involved and for comparison purposes

  Cost models serve as tools to examine every cost factor in more
detail

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

2.2. Cost Notations
  Cost equations consists of a

number of components:
  Data parameters
  Systems parameters
  Query parameters
  Time unit costs
  Communications costs

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data parameters
  Number of records in a table (|R|), and
  Actual size (in bytes) of the table (R).

  Data processing in each processor is based on number of records
(record level)

  I/O and data distribution in an interconnected network is done at a
page level

  Use |S|) and S to indicate a second table

  Use |Ri| and Ri to indicate largest fragment size located in a processor
  Important factor: skewness

2.2. Cost Notations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Systems parameters
  Number of processors (N)

  For example: |R| = 1,000,000; N = 10
  Uniform distribution: |Ri| = |R| / N

(|Ri| = 1,000,000/10 = 100,000 records)

  Skewed distribution: |R| divided by 5 (for example),
hence |Ri| = 200,000 records

  The actual number of the divisor must be modeled correctly

2.2. Cost Notations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Systems parameters
  Page size (P): the size of one data page in byte, which contains a batch

of records
  When records are loaded from disk to main memory, it is not loaded

record by record, but page by page
  R = 4 gigabytes, P = 4 kilobytes, hence R / P = 10242 number of pages

  Hash table size (H): maximum size of the hash table that can fit into the
main memory

  H = 10,000 records

2.2. Cost Notations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Query parameters
  Projectivity ratio (π), and
  Selectivity ratio (σ).

  The value for π and σ is between 0 and 1

  R = 100 bytes, output record size = 45 bytes;
hence π = 0.45

  |Ri| = 1000 records, query results = 4 records;
hence σ = 4/1000 = 0.004

2.2. Cost Notations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Time unit costs
  Time to read from or write to a page on disk (IO);

e.g. reading a whole table from disk to main memory is R / P x IO, or in a
multiprocessor environment, it is Ri / P x IO

  Time to read a record from main memory (tr)
  Time to write a record to main memory (tw)

  Time to perform a computation in the main memory

  Time to find out the destination of a record (td)

2.2. Cost Notations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Communication costs
  Message protocol cost per page (mp): initiation for a message transfer
  Message latency cost per page (ml): actual message transfer time
  Both elements work at a page level, as with the disk

  Two components: one for the sender, and the other for the receiver
  To send a whole table, the sender cost is R / P x (mp + ml)
  The receiver cost is R / P x mp

  In a multiprocessor environment, the sender cost is determined by the
heaviest processor, e.g. p1 x (mp + ml), where p1 is the number of records
to be distributed from the heaviest processor

  But the receiving cost is not p1 x mp, because the heaviest processor
receiving records might be a different processor with a different number of
received records. Hence, receiving cost is p2 x ml, where p1 ≠ p2

2.2. Cost Notations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

2.3. Skew Model
  A major problem in parallel processing
  The non-uniformity of workload distribution among processing

elements
  Two kinds of skew:

  Data skew
  Processing skew

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data skew
  Caused by unevenness of data placement in a disk in each local

processor, or by the previous operator

  Although initial data placement is even, other operators may have
rearranged the data, and data skew may occur as a result

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Processing skew
  Caused by unevenness of the processing itself, and may be propagated by

the data skew initially
  Zipf distribution model to model skew
  Measured in terms of different sizes of fragments allocated to the

processors

  The symbol θ denotes the degree of skewness, where θ = 0 indicates no
skew, and θ = 1 indicates highly skewed

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Processing skew
  When θ = 1, the fragment sizes follow a pure Zipf distribution:

  where γ = 0.57721 (Euler’s constant) and HN is the harmonic number
(approx γ + ln N)

  In case θ > 0, |R1| is the largest fragment, and |RN| is the smallest
  Hence load skew:

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Processing skew
  For simplicity, we use |Ri| instead of |Rmax|
  No skew:

  Highly skewed:

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example
  |R|=100,000 records, N=8 processors

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  No skew vs. highly skewed

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  No skew vs. highly skewed

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  No skew vs. highly skewed

2.3. Skew Model (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

2.4. Basic Operations
  Operations in parallel database systems normally follow these

steps:
  Data loading (scanning) from disk,
  Getting records from data page to main memory,
  Data computation and data distribution,
  Writing records (query results) from main memory to data page, and
  Data writing to disk.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Disk operations
  Disk reading and writing is based on page (I/O page) (P)
  Based on the heaviest processor (Ri)
  Uniform distribution: Ri = R / N
  Skewed distribution: Ri = R / (γ + ln N)

  Scanning cost = Ri / P x IO

  Writing cost = (data computation variables x Ri) / P x IO,
where 0.0 ≤ data computation variable ≤ 1.0
data computation variable = 0.0 means that no records exist in the query
results, whereas data computation variable = 0.0 indicates that all records
are written back to disk.

2.4. Basic Operations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Main memory operations
  Once the data has been loaded from the disk, the record has to be removed

from the data page and placed in main memory (select cost)
  Main memory operations are based on records (|Ri|), not on pages (Ri)
  The reading unit cost (tr) is the reading operation of records from the data

page, the writing unit cost (tw) is to actually write the record to main
memory

  Select cost = |Ri| x (tr + tw)

  Only writing unit cost is involved, and not reading unit cost, as the reading
unit cost is already part of the computation

  Query results generation cost = (data computation variables x |Ri|) x tw

2.4. Basic Operations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data computation and data distribution
  Data computation cost is the cost of basic database operations
  Works in main memory, and hence uses the number of records
  Each data computation operation may involve several basic costs (unit

costs for hashing, for adding the current record to the aggregate value, …)
  Data computation unit cost is tx, and |Ri| may be skewed
  Data computation cost = |Ri| x (tx)

  Data distribution is record transmission from one processor to another
  Involves two costs: the cost associated with determining where each record

goes, and the actual data transmission itself
  The former works in main memory (number of records), the latter is based

on number of pages
  Determining the destination cost = |Ri| x (td)
  Data transmission costs (communication costs) have been explained in

section 2.2 previously

2.4. Basic Operations (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

2.5. Summary
  Basic cost notations

  Parameters, such as data parameters, systems parameters, query
parameters, time unit costs, and communication costs

  Skew model
  Zipf distribution model

  Basic parallel database processing costs
  General steps of parallel database processing, such as disk costs, main

memory costs, data computation costs, and data distribution costs

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Continue to Chapter 3…

Chapter 3
Parallel Search

3.1 Search Queries
3.2 Data Partitioning
3.3 Search Algorithms
3.4 Summary
3.5 Bibliographical Notes
3.6 Exercises

3.1. Search Queries
  Search is selection operation in database queries
  Selects specified records based on a given criteria
  The result is a horizontal subset (records) of the operand

  Three kinds of search queries:
  Exact-match search
  Range search
  Multi attribute search

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Exact-Match Search
  Selection predicate on an attribute to check for an exact match

between a search attribute and a given value
  Expressed by the WHERE clause in SQL

  Query 3.1 will produce a unique record (if the record is found),
whereas Query 3.2 will likely produce multiple records

3.1. Search Queries (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Range Search Query
  The search covers a certain range
  Continuous range search query

  Discrete range search query

3.1. Search Queries (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Multiattribute Search Query
  More than attribute is involved in the search
  Conjunctive (AND) or Disjunctive (OR)
  If both are used, it must be in a form of conjunctive prenex normal form

(CPNF)

3.1. Search Queries (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

3.2. Data Partitioning
  Distributes data over a number of processing elements
  Each processing element is then executed simultaneously with

other processing elements, thereby creating parallelism
  Can be physical or logical data partitioning
  In a shared-nothing architecture, data is placed permanently

over several disks
  In a shared-everything (shared-memory and shared-disk)

architecture, data is assigned logically to each processor
  Two kinds of data partitioning:

  Basic data partitioning
  Complex data partitioning

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Basic Data Partitioning
  Vertical vs. Horizontal data partitioning
  Vertical partitioning partitions the data vertically across all processors.

Each processor has a full number of records of a particular table. This
model is more common in distributed database systems

  Horizontal partitioning is a model in which each processor holds a
partial number of complete records of a particular table. It is more
common in parallel relational database systems

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Basic Data Partitioning
  Round-robin data partitioning
  Hash data partitioning
  Range data partitioning
  Random-unequal data partitioning

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Round-robin data partitioning
  Each record in turn is allocated to a processing element in a clockwise

manner
  “Equal partitioning” or “Random-equal partitioning”
  Data evenly distributed, hence supports load balance
  But data is not grouped semantically

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Hash data partitioning
  A hash function is used to partition the data
  Hence, data is grouped semantically, that is data on the same group

shared the same hash value
  Selected processors may be identified when processing a search

operation (exact-match search), but for range search (especially
continuous range), all processors must be used

  Initial data allocation is not balanced either

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Range data partitioning
  Spreads the records based on a given range of the partitioning

attribute
  Processing records on a specific range can be directed to certain

processors only
  Initial data allocation is skewed too

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Random-unequal data partitioning
  Partitioning is not based on the same attribute as the retrieval

processing is based on a nonretrieval processing attribute, or the
partitioning method is unknown

  The size of each partitioning is likely to be unequal
  Records within each partition are not grouped semantically
  This is common especially when the operation is actually an operation

based on temporary results obtained from the previous operations

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Basic Data Partitioning
  Attribute-based data partitioning
  Non-attribute-based data partitioning

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Complex Data Partitioning
  Basic data partitioning is based on a single attribute (or no attribute)
  Complex data partitioning is based on multiple attributes or is based

on a single attribute but with multiple partitioning methods

  Hybrid-Range Partitioning Strategy (HRPS)
  Multiattribute Grid Declustering (MAGIC)
  Bubba’s Extended Range Declustering (BERB)

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Hybrid-Range Partitioning Strategy (HRPS)
  Partitions the table into many fragments using range, and the

fragments are distributed to all processors using round-robin
  Each fragment contains approx FC records

Where RecordsPerQAve is the average number of records retrieved and
processed by each query, and M is the number of processors that should
participate in the execution of an average query

  Each fragment contains a unique range of values of the partitioning
attribute

  The table must be sorted on the partitioning attribute, then it is
partitioned that each fragment contains FC records, and the fragments
are distributed in round-robin ensuring that M adjacent fragements
assigned to different processors

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Hybrid-Range Partitioning Strategy (HRPS)
  Example: 10000 student records, and the partitioning attribute is

StudentID (PK) that ranges from 1 to 10000. Assume the average
query retrieves a range of 500 records (RecordsPerQ=500). Queries
access students per year enrolment wth average results of 500
records. Assume the optimal performance is achieved when 5
processors are used (M=5)

  The table will be partitioned into 100 fragments
  Three cases: M = N, M > N, or M < N (where N is the number of

processors in the configuration, and M is the number of processors
participating in the query execution

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Hybrid-Range Partitioning Strategy (HRPS)
  Case 1: M = N
  Because the query will overlap with 5-6 fragments, all processors will

be used (high degree of parallelism)
  Compared with hash partitioning: Hash will also use N processors,

since it cannot localize the execution of a range query
  Compared with range partitioning: Range will only use 1-2 processors,

and hence the degree of parallelism is small

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Hybrid-Range Partitioning Strategy (HRPS)
  Case 2: M > N (e.g. M=5, and N=2)
  HRPS will still use all N processors, because it enforces the constraint

that the M adjacent fragments be assigned to different processors
whenever possible

  Compared with range partitioning: an increased probability that a
query will use only one processor (in this example)

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Hybrid-Range Partitioning Strategy (HRPS)
  Case 3: M < N (e.g. M=5, and N=10)
  HRPS distributes 100 fragments to all N processors. Since the query

will overlap with only 5-6 fragments, each individual query is localized
to almost the optimal number of processors

  Compared with hash partitioning: Hash will use all N processors, and
hence less efficient due to start up, communication, and termination
overheads

  Compared with range partitioning: The query will use 1-2 processors
only, and hence less optimal

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Hybrid-Range Partitioning Strategy (HRPS)
  Support for Small Tables

 If the number of fragments of a table is less than the number of
processors, then the table will automatically be partitioned across a
subset of the processors

  Support for Tables with Nonuniform Distributions of the
Partitioning Attribute Values
 Because the cardinality of each fragment is not based on the value of
the partitioning attribute value, once the HRPS determines the
cardinality of each fragment, it will partition a table based on that value

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Multiattribute Grid Declustering (MAGIC)
  Based on multiple attributes - to support search queries based on

either of data partitioning attributes
  Support range and exact match search on each of the partitioning

attributes
  Example: Query 1 (one-half of the accesses) Slname=‘Roberts’, and

Query 2 (the other half) SID between 98555 and 98600. Assume both
queries produce only a few records

  Create a two-dim grid with the two partitioning attributes (Slname and
SID). The number of cells in the grid equal the number of processing
elements

  Determine the range value for each column and row, and allocate a
processor in each cell in the grid

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Multiattribute Grid Declustering (MAGIC)
  Query 1 (exact match on Slname): Hash partitioning can localize the

query processing on one processor. MAGIC will use 6 processors
  Query 2 (range on SID): if the hash partitioning uses Slname, whereas

the query is on SID, the query must use all 36 processors. MAGIC on
the other hand, will only use 6 processors.

  Compared with range partitioning, suppose the partitioning is based on
SID, then Q1 will use 36 processors whilst Q2 will use 1 processor

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Bubba’s Extended Range Declustering (BERB)
  Another multiattribute partitioning method - used in the Bubba

Database Machine
  Two levels of data partitioning: primary and secondary data

partitioning
  Step 1: Partition the table based on the primary partitioning attribute

and uses a range partitioning method

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Bubba’s Extended Range Declustering (BERB)
  Step 2: Each fragment is scanned and an ‘aux’ table is created from

the attribute value of the secondary partitioning attribute and a list of
processors containing the original records

  Table 3.4 shows the ‘aux’ table (called Table IndexB)

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Bubba’s Extended Range Declustering (BERB)
  Step 3: The ‘aux’ table is range partitioned on the secondary

partitioning attribute (e.g. Slname)
  Step 4: Place the fragments from steps 1 and 3 into multiple

processors

3.2. Data Partitioning (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

3.3. Search Algorithms
  Serial search algorithms:

  Linear search
  Binary search

  Parallel search algorithms:
  Processor activation or involvement
  Local searching method
  Key comparison

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Linear Search
  Exhaustive search - search each record one by one until it is found or

end of table is reached

  Scanning cost: 1/2 x R / P x IO
  Select cost: 1/2 x |R| x (tr + tw)
  Comparison cost: 1/2 x |R| x tr
  Result generation cost: σ x |R| x tw, where σ is the search query

selection ratio
  Disk writing cost: σ x R / P x IO

3.3. Search Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Binary Search
  Must be pre-sorted
  The complexity is O(log2(n))
  The cost components for binary search are similar to those of linear

search, except that the component of 1/2 in linear search is now
replaced with log2:

3.3. Search Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel search algorithms:
  Processor activation or involvement
  Local searching method
  Key comparison

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

3.3. Search Algorithms (contʼd)

  Processor activation or involvement
  The number of processors to be used by the algorithm
  If we know where the data to be sought are stored, then there is no point in

activating all other processors in the searching process
  Depends on the data partitioning method used
  Also depends on what type of selection query is performed

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

3.3. Search Algorithms (contʼd)

  Local searching method
  The searching method applied to the processor(s) involved in the searching

process
  Depends on the data ordering, regarding the type of the search (exact

match of range)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

3.3. Search Algorithms (contʼd)

  Key comparison
  Compares the data from the table with the condition specified by the query
  When a match is found: continue to find other matches, or terminate
  Depends on whether the data in the table is unique or not

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

3.3. Search Algorithms (contʼd)

3.4. Summary
  Search queries in SQL using the WHERE clause

  Search predicates indicates the type of search operation
  Exact-match, range (continuous or discrete), or multiattribute search

  Data partitioning is a basic mechanism of parallel search
  Single attribute-based, no attribute-based, or multiattribute-based

partitioning

  Parallel search algorithms have three main components
  Processor involvement, local searching method, and key comparison

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Continue to Chapter 4…

Chapter 4
Parallel Sort and

GroupBy

4.1 Sorting, Duplicate Removal and Aggregate
4.2 Serial External Sorting Method
4.3 Algorithms for Parallel External Sort
4.4 Parallel Algorithms for GroupBy Queries
4.5 Cost Models for Parallel Sort
4.6 Cost Models for Parallel GroupBy
4.7 Summary
4.8 Bibliographical Notes
4.9 Exercises

4.1. Sorting, Duplicate Removal and
Aggregate
  Sorting is expressed by the ORDER BY clause in SQL
  Duplicate remove is identified by the keyword DISTINCT in SQL

  Basic aggregate queries:
  Scalar aggregates - produce a single value for a given table
  Aggregate functions - produce a set of values

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  GroupBy
  Groups by specific attribute(s) and performs an aggregate function for

each group

4.1. Sorting, Duplicate Removal and Aggregate
(contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

4.2. Serial External Sorting
  External sorting assumes that the data does not fit into main

memory
  Most common external sorting is sort-merge
  Break the file up into

 unsorted subfiles,
 sort the subfiles, and
 then merge the subfiles
 into larger and larger
 sorted subfiles until the
 entire file is sorted

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example
  File size to be sorted = 108 pages, number of buffer = 5 pages
  Number of subfiles = 108/5 = 22 subfiles (the last subfile is only 3

pages long). Read, sort and write each subfile
  Pass 0 (merging phase), we use B-1 buffers (4 buffers) for input and 1

buffer for output
  Pass 1: read 4 sorted subfiles and perform 4-way merging (apply a

need k-way algorithm). Repeat the 4-way merging until all subfiles are
processed. Result = 6 subfiles with 20 pages each (except the last one
which has 8 pages)

  Pass 2: Repeat 4-way merging of the 6 subfiles like pass 1 above.
Result = 2 subfiles

  Pass 3: Merge the last 2 subfiles
  Summary: 108 pages and 5 buffer pages require 4 passes

4.2. Serial External Sorting (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example
  Buffer size plays an important role in external sort

4.2. Serial External Sorting (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

4.3. Parallel External Sort
  Parallel Merge-All Sort
  Parallel Binary-Merge Sort
  Parallel Redistribution Binary-Merge Sort
  Parallel Redistribution Merge-All Sort
  Parallel Partitioned Sort

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Merge-All Sort
  A traditional approach
  Two phases: local sort and final merge
  Load balanced in local sort
  Problems with merging:

Heavy load on one processor
Network contention

4.3. Parallel External Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Binary-Merge Sort
  Local sort similar to traditional method
  Merging in pairs only
  Merging work is now spread to

 pipeline of processors,
 but merging is still heavy

4.3. Parallel External Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Binary-Merge Sort
  Binary merging vs. k-way merging
  In k-way merging, the searching for the smallest value among k

partitions is done at the same time
  In binary merging, it is pairwise, but can be time consuming if the list is

long
  System requirements: k-way merging requires k files open

simultaneously, but the pipeline process in binary merging requires
extra overheads

4.3. Parallel External Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Redistribution
Binary-Merge Sort

  Parallelism at all levels in
the pipeline hierarchy

  Step 1: local sort
  Step 2: redistribute the

results of local sort
  Step 3: merge using the

same pool of processors

  Benefit: merging becomes
lighter than without
redistribution

  Problem: height of the tree

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Redistribution
Merge-All Sort

  Reduce the height of the
tree, and still maintain
parallelism

  Like parallel merge-all sort,
but with redistribution

  The advantage is true
parallelism in merging

  Skew problem in the
merging

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Partitioned Sort

  Two stages: Partitioning
stage and Independent local
work

  Partitioning (or range
redistribution) may raise
load skew

  Local search is done after
the partitioning, not before

  No merging is necessary
  Main problem: Skew

produced by the partitioning

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Partitioned Sort

  Bucket tuning: produce
more buckets than the
available processors

  Bucket tuning does not work
in parallel sort, because in
parallel sort, the order of
processor is important

  Bucket tuning for load
balancing will later be used
in parallel join

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

4.4. Parallel GroupBy
  Traditional methods (Merge-All and Hierarchical Merging)
  Two-phase method
  Redistribution method

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Traditional Methods
  Step 1: local aggregate in each processor
  Step 2: global aggregation
  May use a Merge-All or Hierarchical method
  Need to pay a special attention to some aggregate functions (AVG)

when performing a local aggregate process

4.4. Parallel GroupBy (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Two-Phase Method
  Step 1: local aggregate in each processor. Each processor groups

local records according to the groupby attribute
  Step 2: global aggregation where all temp results from each processor

are redistributed and then final aggregate is performed in each
processor

4.4. Parallel GroupBy (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Redistribution Method
  Step 1 (Partitioning phase): redistribute raw records to all processors
  Step 2 (Aggregation phase): each processor performs a local

aggregation

4.4. Parallel GroupBy (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

4.5. Cost Models for Parallel Sort
  Additional cost notations

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Serial External Merge-Sort
  I/O cost components are load and save costs
  Load cost is the cost for loading data from disk to main memory

  Save cost is the cost of writing data from the main memory to the disk,
which is identical to load cost equation

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Serial External Merge-Sort
  CPU cost components are select, sorting, merging, and generation

result costs
  Select cost is the cost for obtaining a record from the data page

  Sorting cost is the internal sorting cost which has O(N x log2 N)

  Merging cost is applied to pass 1 onward

  Generating result cost is determined by the number of records being
generated or produced in each pass before they are written to disk
multiplied

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Merge-All Sort
  Local merge sort costs are I/O costs, CPU costs, and Communication

costs
  I/O costs consist of load and save costs

  CPU costs consist of select, sorting, merging and generating results
costs

  Communication costs for sending local sorted results to the host:

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Merge-All Sort
  Final merging costs are communication, I/O, and CPU costs
  Communication cost is the receiving cost from local sorting operators

  I/O cost is the load and save costs

  CPU cost is the select, merging, and generating results costs

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Binary-Merge Sort
  The costs consist of local merge-sort costs, and pipeline merging costs
  The local merge-sort costs are exactly the same as those of parallel

merge-all sort, since the local sorting phase in both methods is the
same

  Hence, focus on pipeline merging costs
  In pipeline merging, we need to determine the number of levels, which

is log2(N)
  In level 1, the number of processors used is up to half (N’=N/2)
  The skew equation is then:

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Binary-Merge Sort
  Costs for level 1:

 
 where R’ indicates the number of records being processed at a node in
a level of pipeline merging

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Binary-Merge Sort
  In the subsequent levels, the number of processors is further reduced

by half. The new N’ value becomes N’ = N’ / 2. This also impact the
skew equation

  At the last level of pipeline merging, the host performs a final binary
merging, where N’ = 1

  The total pipeline binary merging costs are:

  The values of R’I and |R’I| are not constant throughout the pipeline, but
increase from level to level as the number of processors N’ is reduced
by half when progressing from one level to another

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Redistribution Binary-Merge Sort
  Local merge-sort costs, and pipeline merging costs
  Local sort operation is similar to the previous two parallel sorts, but the

temp results are being redistributed, which incurs additional overhead
  The compute destination cost is:

 where Ri may involve data skew
  Pipeline merging costs are also similar to the those without

redistribution
  Differences: number of processors involved in each level, where all

processors participate. Hence we use Ri and |Ri|, and not R’i and |R’i|;
and the compute destination cost are applicable to all levels in the
pipeline

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Redistribution Binary-Merge Sort
  The pipeline merging costs are:

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Redistribution Merge-All Sort
  Local merge-sort costs and merging costs
  Local merge-sort costs are the same as those of parallel redistribution

binary-merge sort with compute destination costs
  Merging costs are similar to those of parallel merge-all sort, except

one main difference. Here we use Ri and |Ri|, not R and |R|
  The merging costs are then:

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Partitioned Sort
  Scanning/partitioning costs, and local merge-sort costs
  Scanning and partitioning costs involve I/O, CPU, and communication

costs
  I/O costs consist of load cost:

  CPU costs consist of select costs:

  Communication costs consist of data transfer costs:

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Partitioned Sort
  The local merge-sort costs are similar to other local merge-sort costs,

except communication costs are associated with data received from
the first phase

  Communication cost for receiving data:

  I/O costs which are load and save costs:

  CPU costs are:

4.5. Cost Models for Parallel Sort (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

4.6. Cost Models for Parallel GroupBy
  Additional cost notations

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Two-Phase Method
  Phase 1: Local aggregation
  Scan cost:
  Select cost:
  Local aggregation cost:
  Reading/Writing of overflow buckets:

  Generating result records cost:
  Determining the destination cost:
  Data transfer cost:

4.6. Cost Models for Parallel GroupBy (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Two-Phase Method
  Phase 2: Consolidation (Merging)
  The number of records arriving at a processor:

  The first term is the number of selected records from the 1st phase
  The second term is the table size of the selected records

  Receiving records cost:
  Computing final aggregation value cost:
  Generating final result cost:
  Disk cost for storing the final result:

4.6. Cost Models for Parallel GroupBy (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Redistribution Method
  Phase 1: Distribution/Partitioning
  The scan and selection costs are the same as for those in the two-

phase method
  Scan cost:
  Select cost:

  Apart from these two costs, the finding destination cost and the data
transfer cost are added to this model

  Finding destination cost:
  Data transfer cost:

  If the number of groups is less than the number of processors, then
Ri = R / (Number of groups), instead of
Ri = R / N

4.6. Cost Models for Parallel GroupBy (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Redistribution Method
  Phase 2: Aggregation
  Receiving records cost:

 Only selected attributes are involved (π)

  Computing aggregation cost:

 It does not include π, because we take into account the number of
records, not the record size

  Reading/Writing of overflow buckets cost:

 where s is the overall GroupBy selectivity ratio (σ= σp x σg)
  Generating final result cost:
  Disk cost:

4.6. Cost Models for Parallel GroupBy (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

4.7. Summary
  Sorting and duplicate removal are expressed in ORDER BY and

DISTINCT in SQL

  Parallel algorithms for database sorting
  Parallel merge-all sort, parallel binary-merge sort, parallel redistribution

binary-merge sort, parallel redistribution merge-all sort, and parallel
partitioned sort

  Cost models for each parallel sort algorithm
  Buffer size

  Parallel redistribution algorithm is prone to processing skew
  If processing skew degree is high, then use parallel redistribution merge-all

sort.
  If both data skew and processing skew degrees are high or no skew, then

use parallel partitioned sort
D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

4.7. Summary (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel groupby algorithms
  Traditional methods (merge-all and hierarchical methods)
  Two-phase method
  Redistribution method

  Two-phase and Redistribution methods perform better than the
traditional and hierarchical merging methods

  Two-phase method works well when the number of groups is
small, whereas the Redistribution method works well when the
number of groups is large

Continue to Chapter 5…

Chapter 5
Parallel Join

5.1 Join Operations
5.2 Serial Join Algorithms
5.3 Parallel Join Algorithms
5.4 Cost Models
5.5 Parallel Join Optimization
5.6 Summary
5.7 Bibliographical Notes
5.8 Exercises

5.1. Join Operations
  Join operations to link two tables based on the nominated

attributes - one from each table

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.2. Serial Join Algorithms
  Three serial join algorithms:

  Nested loop join algorithm
  Sort-merge join algorithm
  Hash-based join algorithm

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Nested-Loop Join Algorithm
  For each record of table R, it goes through all records of table S
  If there are N records in table R and M records in table S, the

efficiency of a nested-loop join algorithm is O(NM)

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Table R Table S Join Results
Adele 8 Arts 8 Adele 8 Arts
Bob 22 Business 15 Ed 11 Health
Clement 16 CompSc 2 Joanna 2 CompSc
Dave 23 Dance 12
Ed 11 Engineering 7
Fung 25 Finance 21
Goel 3 Geology 10
Harry 17 Health 11
Irene 14 IT 18
Joanna 2
Kelly 6
Lim 20
Meng 1
Noor 5
Omar 19

Figure 5.2. Sample data

Algorithm: Sort-merge joi n
Input: Tables R and S
Output: Query Result Qr
1. Let Qr = {}
2. Sort records of table R based on the join attribute
3. Sort records of table S based on the join attribute
4. Let i = 1 and j = 1
5. Repeat
6. Read record R(i)
7. Read record S(j)
8. If join attribute R(i) < join attribute S(j) Then
9. i++
10. Else
11. If join attribute R(i) > join attribute S(j) Then
12. j++
13. Else
14. Put records R(i) and S(j) into the Qr
15. i++; j++
16. If either R(i) or S(j) is EOF Then
17. Break

Figure 5.5. Sort-Merge join algorithm

  Sort-Merge Join Algorithm
  Both tables must be pre-sorted based on the join attribute(s). If not,

then both tables must be sorted first
  Then merge the two sorted tables

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Table R Table S Join Results
Meng 1 CompSc 2 Joanna 2 CompSc
Joanna 2 Engineering 7 Adele 8 Arts
Goel 3 Arts 8 Ed 11 Health
Noor 5 Geology 10
Kelly 6 Health 11
Adele 8 Dance 12
Ed 11 Business 15
Irene 14 IT 18
Clement 16 Finance 21
Harry 17
Omar 19
Lim 20
Bob 22
Dave 23
Fung 25

Figure 5.4. Sorted tables

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Table R Table S Join Results
Meng 1 CompSc 2 Joanna 2 CompSc
Joanna 2 Engineering 7 Adele 8 Arts
Goel 3 Arts 8 Ed 11 Health
Noor 5 Geology 10
Kelly 6 Health 11
Adele 8 Dance 12
Ed 11 Business 15
Irene 14 IT 18
Clement 16 Finance 21
Harry 17
Omar 19
Lim 20
Bob 22
Dave 23
Fung 25

Figure 5.4. Sorted tables

  Hash-based Join Algorithm
  The records of files R and S are both hashed to the same hash file,

using the same hashing function on the join attributes A of R and B of
S as hash keys

  A single pass through the file with fewer records (say, R) hashes its
records to the hash file buckets

  A single pass through the other file (S) then hashes each of its records
to the appropriate bucket, where the record is combined with all
matching records from R

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Algorithm: Hash-based joi n
Input: Tables R and S
Output: Query Result Qr
1. Let Qr = {}
2. Let H be a hash function
3. For each record in table S
4. Read a record from table S
5. Hash the record based on join attribute value using
 hash function H into hash table
6. For each record in table R
7. Read a record from table R
8. Hash the record based on join attribute value using H
9. Probe into the hash table
10. If an index entry is found Then
11. Compare each record on this index entry with
 the record of table S
12. If matched Then
13. Put the pair into Qr

Figure 5.8. Hash-based join algorithm

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Hash Ta b le
Tabl e S Index E n tr i es
Arts 8 1 Geology/10
Busi n ess 15 2 Comp S c/2 He a lt h /11
Comp S c 2 hashed 3 Danc e /12 Finan c e/21
Dance 12 into 4
Enginee r ing 7 5
Finan c e 21 6 Busi n es s /15
Geology 10 7 Enginee r ing/7
He a lth 11 8 Arts/8
IT 18 9 IT/18

10
11
12

F igu r e 5. 6 . Has h i n g Ta b l e S

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Comparison
  The complexity of join algorithms is normally dependent on the number

of times that a disk scan needs to be performed
  Nested-loop join algorithm = O(NM)
  Sort-merge join algorithm = O(NlogN + MlogM + N + M)
  Hash-based join algorithm = O(N + M)

5.2. Serial Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.3. Parallel Join Algorithms
  Parallelism of join queries is achieved through data parallelism,

whereby the same task is applied to different parts of the data
  After data partitioning is completed, each processor will have its

own data to work with using any serial join algorithm
  Data partitioning for parallel join algorithms:

  Divide and broadcast
  Disjoint data partitioning

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Divide and Broadcast-based Parallel Join Algorithms
  Two stages: data partitioning using the divide and broadcast method,

and a local join
  Divide and Broadcast method: Divide one table into multiple disjoin

partitions, where each partition is allocated a processor, and broadcast
the other table to all available processors

  Dividing one table can simply use equal division
  Broadcast means replicate the table to all processors
  Hence, choose the smaller table to broadcast and the larger table to

divide

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Divide and Broadcast-based Parallel Join Algorithms
  No load imbalance problem, but the broadcasting method is inefficient
  The problem of workload imbalance will occur if the table is already

partitioned using random-unequal partitioning
  If shared-memory is used, then there is no replication of the broadcast

table. Each processor will access the entire table S and a portion of
table R. But if each processor does not have enough working space,
then the local join might not be able to use a hash-based join

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Disjoint Partitioning-based Parallel Join Algorithms
  Two stages: data partitioning using a disjoint partitioning, and local join
  Disjoint partitioning: range or hash partitioning
  Local join: any serial local join algorithm

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example 1: Range partitioning

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example 1: Range partitioning

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example 2: Hash partitioning

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example 2: Hash partitioning

5.3. Parallel Join Algorithms (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join
  Cost Models for Divide and Broadcast

  Assume the tables have already been partitioned and placed in each
processor

  The cost components for the broadcasting process has three phases
  Phase 1: data loading
  Phase 2: data broadcasting
  Phase 3: data storing

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join
  Cost Models for Divide and Broadcast

  Phase 1: data loading consists of the scan costs and the select costs

  Scan cost for loading data from local disk in each processor is:
(Si / P) x IO

  Select cost for getting record out of data page is:
|Si| x (tr + tw)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join
  Cost Models for Divide and Broadcast

  Phase 2: The broadcast cost by each processor broadcasting its fragment
to all other processors

  Data transfer cost is: (Si / P) x (N – 1) x (mp + ml)
  The (N-1) indicates that each processor must broadcast to all other

processors. Note that broadcasting from one processor to the others has to
be done one processor at a time, although all processors send the
broadcast in parallel. The above cost equation would be the same as
(S - Si) x (mp + ml), where (S - Si) is the size of other fragments.

  Receiving records cost is: (S - Si) x (mp)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join
  Cost Models for Divide and Broadcast

  Phase 3: Each processor after receiving all other fragments of table S,
needs to be stored on local disk.

  Disk cost for storing the table is: (S - Si) x IO

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Cost Models for Disjoint Partitioning
  Three main cost components: loading costs, distribution costs, and storing

costs
  The loading costs include scan costs and select costs

  Scan cost for loading tables R and S from local disk in each processor is:
((Ri / P) + (Si / P)) x IO

  Select cost for getting record out of data page is: (|Ri| + |Si|) x (tr + tw)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join (contʼd)

  Cost Models for Disjoint Partitioning
  The distribution costs contains: the cost of determining the destination of

each record, the actual sending and receiving costs

  Finding destination cost is: (|Ri| + |Si|) x (td)
  Data transfer cost is: ((Ri / P) + (Si / P)) x (mp + ml)
  Receiving records cost is: ((Ri / P) + (Si / P)) x (mp)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join (contʼd)

  Cost Models for Disjoint Partitioning
  Finally, the last phase is the data storing which involves storing all records

received by each processor

  Disk cost for storing the result of data distribution is: ((Ri / P) + (Si / P)) x IO

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join (contʼd)

  Cost Models for Local Join
  Assume to use hash-based join
  Three main phases: data loading from each processor, the joining process

(hashing and probing), and result storing in each processor.

  Phase 1: The data loading consists of scan costs and select costs
  Scan cost = ((Ri / P) + (Si / P)) x IO
  Select cost = (|Ri| + |Si|) x (tr + tw)

  (|Ri| + |Si|) and ((Ri / P) + (Si / P)) correspond to the values in the receiving
and disk costs of the disjoint partitioning

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join (contʼd)

  Cost Models for Local Join
  Phase 2: The join process is the hashing and probing costs
  Join costs involve reading, hashing, and probing:

(|Ri| x (tr + th) + (|Si| x (tr + th + tj))

  If the memory size is smaller than the hash table size, we normally partition
the hash table into multiple buckets whereby each bucket can perfectly fit
into main memory. All but the first bucket is spooled to disk.

  Reading/Writing of overflow buckets cost is the I/O cost associated with the
limited ability of main memory to accommodate the entire hash table.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join (contʼd)

€

1− min H
Si
,1

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ ×

Si
P
× 2× IO

⎛

⎝
⎜

⎞

⎠
⎟

  Cost Models for Local Join
  Phase 3: query results storing cost, consisting of generating result cost and

disk cost.

  Generating result records cost is: |Ri| x σj x |Si| x tw

  Disk cost for storing the final result is: (πR x Ri x σj x πS x Si / P) x IO

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.4. Cost Models for Parallel Join (contʼd)

5.5. Parallel Join Optimization
  The aim of query processing in general is to speed up the query

processing time
  In terms of parallelism, the reduction in the query elapsed time is

achieved by having each processor finish its execution as early as
possible and as evenly as possible → load balancing issue

  In the disjoint partitioning, after the data is distributed to the
designated processors, the data has to be stored on disk. Then in
the local join, the data has to be loaded from the disk again →
managing main memory issue

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Optimizing Main Memory
  Disk access is the most expensive operations, so need to reduce disk

access as much as possible
  If it is possible, only a single scan of data should be done. If not, then

minimize the number of scan
  If main memory size is unlimited, single disk scan is possible
  However, main memory size is not unlimited, hence optimizing main

memory is critical
  Problem: In the distribution, when the data arrives at a processor, it is

stored in disk. In the local join, the data needs to be reloaded from disk
  This is inefficient. When the data arrives after being distributed from

other processor, the data should be left in main memory, so that the
data remain available in the local join process

  The data left in the main memory can be as big as the allocated size
for data in the main memory

5.5. Parallel Join Optimization (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Optimizing Main Memory
  Assuming that the size of main memory for data is M (in bytes), the

disk cost for storing data distribution with a disjoint partitioning is:

((Ri / P) + (Si / P) - M) x IO

  And the local join scan cost is then reduced by M as well:

((Ri / P) + (Si / P) - M) x IO

  When the data from this main memory block is processed, it can be
swapped with a new block. Therefore, the saving is really achieved by
not having to load/scan the disk for one main memory block

5.5. Parallel Join Optimization (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Load Balancing
  Load imbalance is the main problem in parallel query processing. It is

normally caused by data skew and then processing skew
  No load imbalance in divide and broadcast-based parallel join. But this

kind of parallel join is unattractive, due to the heavy broadcasting
  In disjoint-based parallel join algorithms, processing skew is common
  To solve this skew problem, create more fragments than the available

processors, and then rearrange the placement of the fragments

5.5. Parallel Join Optimization (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

5.6. Summary
  Parallel join is one of the most important operations in parallel

database systems

  Parallel join algorithms have two stages
  Data partitioning
  Local join

  Two types of data partitioning
  Divide and broadcast
  Disjoint partitioning

  Three types of local join
  Nested-loop join
  Sort-merge join
  Hash-based join

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Continue to Chapter 6…

Chapter 7
Parallel Indexing

7.1 Introduction
7.2 Parallel Indexing Structures
7.3 Index Maintenance
7.4 Index Storage Analysis
7.5 Parallel Search Query Algorithms
7.6 Parallel Index Join Algorithms
7.7 Comparative Analysis
7.8 Summary
7.9 Bibliographical Notes
7.10 Exercises

7.1. Parallel Indexing

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Index is an important element in databases
  Parallel index structure is essentially data partitioning.

However, index partitioning is not as straightforward as table
partitioning, because index is not flat like table

  B+ tree is the most common indexing structure
  Each non-leaf node may consist up to k keys and k+1 pointers to the

nodes on the next level
  The data is pointed by the leaf nodes
  All child nodes which are on the left-hand side of the parent node,

have key values less than or equal to the key on their parent node.
  The keys of child nodes on the right-hand side of the parent node are

greater than the key of their parent nodes

7.1. Parallel Indexing (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Table (ID, Name):

23 Adams 18 Kathy 39 Uma
65 Bernard 21 Larry 43 Vera
37 Chris 10 Mary 47 Wenny
60 David 74 Norman 50 Xena
46 Eric 78 Oprah 69 Yuliana
92 Fred 15 Peter 75 Zorro
48 Greg 16 Queenie 8 Agnes
71 Harold 20 Ross 49 Bonnie
56 Ian 24 Susan 33 Caroline
59 Johanna 28 Tracey 38 Dennis

Index (B+ Tree):

o8 o10 o15 o28 o33 o37 o46 o47 o48

o38 o39 o43 o49 o50 o56 o65 o69 o71o16 o18 o23 o24

o20 o21 o59 o60 o74 o75

o78 o92

15 43 56

37

18

21 24 71 75

48 60

Figure 7.1. A Sample Table and Index

7.1. Parallel Indexing (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Three parallel indexing structures
  Nonreplicated index (NRI)
  Partially replicated index (PRI)
  Fully replicated index (FRI)

  There are different variations to each parallel index,
depending on two factors

  Index partitioning attributes
  Table partitioning attributes Indexed Attribute

= Table
Partitioning

Attribute

No Index
Partitioning

Attribute

Indexed Attribute ≠
Table Partitioning

Attribute

Non-Replicated
Index
NRI

NRI-1

NRI-2

NRI-3

Partially-
Replicated Index

PRI

PRI-1

PRI-2

PRI-3

Fully-Replicated
Index
FRI

FRI-1

FRI-3

Figure 7.2. Parallel Indexing Structures

o8 o10 o15 o23 o24 o28

o49 o50 o56

o16 o18

o33 o37

o20 o21

46

15 18

37 39

21

48 56

o38 o39 o43 o46 o47 o48 o59 o60

o74 o75 o78 o92o65 o69 o71

71 75

Processor 1 (1-30):

Processor 2 (31-60):

Processor 3 (61-100):

Figure 7.3. NRI-1 structure (index partitioning attribute = table partitioning attribute)

7.2. Parallel Indexing Structures

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Nonreplicated Indexing
(NRI) Structures

  The global index is partitioned
into several disjoint and
smaller indices

  Each of these small indices is
placed in a separate
processing element

  NRI-1: the index partitioning
attribute is the same as the
table partitioning attribute

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Nonreplicated Indexing (NRI)
Structures

  NRI-2: the local indices are built
on whatever data already exists
in each processing element

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Nonreplicated Indexing (NRI)
Structures

  NRI-3: the attribute used in index
partitioning is different from that
in data partitioning

  Hence, the pointers from the leaf
nodes to the actual record may
cross to different processor,
because the actual record is
located at a different processor

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Partially Replicated Index (PRI)
  Like NRI, there are three variants (PRI-1, PRI-2, and PRI-3),

depending on index partitioning attributes and table partitioning
attributes

  In PRI, the global index is maintained and is not partitioned. Each
processing element has a different part of the global index, and the
overall structure of the index is preserved

  Ownership rule: Processor owning a leaf node also owns all nodes
from the root to that leaf. Hence, the root node is replicated to all
processors, and non-leaf nodes may be replicated to some processors

  If a leaf node has several keys belonging to different processors, this
leaf node is also replicated to the processors owning the keys

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  PRI-1
  Index partitioning attribute = table partitioning attribute

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  PRI-1 implementation
  Multiple node pointers model - impractical

37

18 48 60

37

18

Processor 1 Processor 2

48 60

37

Processor 3

Figure 7.7. Multiple Node Pointers Model for PRI

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  PRI-1 implementation
  Single node pointer model

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  PRI-2
  No index partitioning is used

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  PRI-2
  No index partitioning is used

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  PRI-3
  Index partitioning attribute ≠

table partitioning attribute

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Fully Replicated Index (FRI)
  The entire global index is replicated to all processors
  There are only two variants: index partitioning attribute is the same as

or is different from table partitioning attribute (FRI-1 and FRI-3)

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  FRI-1

7.2. Parallel Indexing Structures (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  FRI-3

7.3. Index Maintenance

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Index maintenance covers insertion and deletion of index nodes
  General steps:

  Insert/delete a record to the table (carried out in processor p1)
  Insert/delete an index node to/from the index tree (carried out in processor p2)
  Update the data pointer

  Two issues:
  Whether p1 = p2. This is data pointer complexity
  Whether maintaining an index (insert/delete) involves multiple processors. This is

index tree restructuring issue

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Maintaining a Parallel Non-Replicated Index (NRI)
  Involves a single processor, and hence it is really whether p1 is equal

to p2
  For NRI-1 and NRI-2 structures, p1 = p2, therefore it is done as per

normal index maintenance on sequential processors
  For NRI-3, because p1 ≠ p2, location of the record to be inserted/

deleted may be different from the index node insertion/deletion. So,
after both the record and the index entry (key) have been inserted, the
data pointer from the new index entry in p1 has to be established to the
record in p2. Deletion is also similar.

7.3. Index Maintenance (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Maintaining a Parallel Partially-Replicated Index (PRI)
  Maintenance of PRI-1 and PRI-2 is similar to that of NRI-1 and NRI-2

where p1= p2. PRI-3 is also similar to NRI-3; that is, p1≠ p2.
  Main issue is: index restructuring
  Example: insert node 21

7.3. Index Maintenance (contʼd)

Processors 1, 2

o18 o23 o37 o65 o71 o92o46 o48

37 48 60(a) Initial Tree

o56 o59 o60

Processor 2 Processor 2 Processor 3

Processors 1, 2, 3

Insert 21 (overflow)

(b2) Split (Non Leaf Node)

Processors 1, 2
o23 o37

37 48 60

(b1) Split (Leaf Node)

Processors 1, 2, 3

Insert 21 (overflow)

o18 o21

Processors 1, 2 Processor 2

o23 o37

48 60

Processors 1, 2, 3

o18 o21

Processors 1, 2

Processor 2

21

37

o46 o48

o46 o48

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Maintaining a Parallel Partially-Replicated Index (PRI)
  Example: insert node 21

7.3. Index Maintenance (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Maintaining a Parallel Partially-Replicated Index (PRI)
  Example: insert node 21

7.3. Index Maintenance (contʼd)

(c) Restructure (Processor Re-Allocation)

o23 o37

48 60

Processors 1, 2, 3

o18 o21

Processors 1, 2

Processor 2

21

37

Processors 1, 2

Processors 2, 3

Processor 1

o46 o48

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Maintaining a Parallel Partially-Replicated Index (PRI)
  Example: delete node 21

7.3. Index Maintenance (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Maintaining a Parallel Partially-Replicated Index (PRI)
  Example: delete node 21

7.3. Index Maintenance (contʼd)

Processors 1, 2

(b) Merge

48 60

Processors 1, 2, 3

37

37

Processors 1, 2

Processors 2, 3

Modify

o46 o48

Processor 2

o18 o23 o37

void

Processors 1, 2

o18 o23 o37 o46 o48

37 48 60
(c) Collapse

Processor 2

Processors 1, 2, 3

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Maintaining a Parallel Fully-Replicated Index (FRI)
  Index maintenance of the FRI structures is similar to that of the NRI

structures, as all indexes are local to each processor.

7.3. Index Maintenance (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Comparisons
  The simplest forms are NRI-1 and NRI-2 structures, as p1= p2 and only

single processors are involved in index maintenance (insert/delete).

  The next level complexity is on data pointer maintenance, especially
when index node location is different from based data location. The
simpler one is the NRI-3 structure, where data pointer from an index
entry to the record is 1-1. The more complex one is the FRI structures,
where the data pointers are N-1 (from N index nodes to 1 record).

  The highest complexity level is on index restructuring. This applicable
to all the three PRI structures.

7.3. Index Maintenance (contʼd)

7.4. Index Storage Analysis

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Storage cost models for Uniprocessors
  Record storage: the length of each record, and the blocking factor

Record length = sum of all fields + 1 byte deletion marker

Blocking factor = floor (Block size / Record length)

Total blocks for all records = ceiling (Number of records / Blocking factor)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Storage cost models for Uniprocessors
  Index storage: contains leaf nodes and non-leaf nodes

 The relationship between number of keys in a leaf node and the size of
each leaf node:

(pleaf x (Key size + Data pointer)) + Node pointer ≤ Block size
 where pleaf is the number of keys in a leaf node, Key size is the size of
the indexed attribute (or key), Data pointer is the size of the data
pointer, Node pointer is the size of the node pointer, and Block size is
the size of the leaf node.

Number of leaf nodes b1 = ceiling (Number of records / (Percentage x
pleaf))

 where Percentage is the percentage that indicates by how much
percentage a node is full

7.4. Index Storage Analysis (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Storage cost models for Uniprocessors
  Index storage:

 Number of entries in each non-leaf node (indicated by p; as opposed
to pleaf) is:

(p x Node pointer) + ((p – 1 x Key size) ≤ Block size

 The fanout (fo) of non-leaf node is influenced by the Percentage of an
index tree to be full:

fo = ceiling (Percentage x p)

 Number of levels in an index tree is:
x = ceiling (logfo (b1)) + 1)

7.4. Index Storage Analysis (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Storage cost models for Uniprocessors
  Index storage:

 Total non-leaf nodes =

 where bi = ceiling (bi-1 / fo)

 Total index blocks = b1 + Total non-leaf nodes

∑
=

x

i
ib

2

7.4. Index Storage Analysis (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Storage cost models for Parallel Processors
  NRI storage: The same calculation applied to uniprocessor indexing

can be used by NRI. But the number of records is smaller than that of
the uniprocessors

  PRI storage: … next slides …

  FRI storage: Record storage is the same for all indexing structures, as
the records are uniformly partitioned to all processors. Index storage is
very similar to NRI, except:
 The number of records used in the calculation of the number of
entries in leaf nodes is not divided by the number of processors.
 The sizes of data pointers and node pointers must incorporate
information on processors. This is necessary since both data and node
pointers may go across to another processor.

7.4. Index Storage Analysis (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Storage cost models for Parallel Processors
  PRI storage:

 Record storage cost models for all NRI, PRI, and FRI are all the same;
that is, divide the number of records evenly among all processors, and
calculate the total record blocks in each processor
 Number of leaf nodes in each processor (we call this c1, instead of b1):

c1 = ceiling (b1 / Number of processors) + 2

Total non-leaf nodes = c1 + +cx ∑
−

=

1

2

x

i
ic

7.4. Index Storage Analysis (contʼd)

7.5. Parallel Search using Index
  Parallel one-index search

  Queries on the search operation of one indexed attribute. This includes
exact match or range queries

  Parallel multi-index search
  Queries having search predicates on multiple indexed attributes

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel one-index search
  Depending on the query type and parallel index
  Parallel exact-match search: processor involvement, index tree traversal,

and record loading
  Parallel range search: continuous-range search, and discrete-range

search

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel exact-match search (using one index)
  Processor involvement: Ideally parallel processing may isolate into the

processor(s) where the candidate records are located. Involving more
processors in the process will certainly not do any good, especially if they
do not produce any result.

  Case 1 (selected processors): Applicable to all indexing structures, except
for the NRI-2 structure.

  Case 2 (all processors): Applicable to the NRI-2 indexing structure only,
because using the NRI-2 indexing structure, there is no way to identify
where the candidate records are located without searching in all processors

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel exact-match search (using one index)
  Index tree traversal: Searching is done through index tree traversal

starting from the root node and finishing either at a matched leaf node or no
match is found.

  Case 1 (isolated to local processors): Applicable to all indexing structures,
but PRI-2.

  Case 2 (crossing from one processor to another): Applicable to PRI-2 only,
where searching that starts from a root node at any processor may end up
on a leaf node at a different processor

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel exact-match search (using one index)
  Record loading: Once a leaf node containing the desired data has been

found, the record pointed by the leaf node is loaded from disk.

  Case 1 (local record loading): Applicable to NRI/PRI/FRI-1 and NRI/PRI-2
indexing structures, since the leaf nodes and the associated records in
these indexing schemes are located at the same processors.

  Case 2 (remote record loading): Applicable to NRI/PRI/FRI-3 indexing
structures where the leaf nodes are not necessarily placed at the same
processor where the records reside.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel range search (using one index)
  Continuous range: May need to involve multiple processors, need to

identify the lower and upper bound of the range, and once lower/upper
bound is identified, it becomes easy to trace all values within a given range,
by traversing leaf nodes of the index tree

  Discrete range: each discrete value in the search predicate is converted
into multiple exact match predicates. Further processing follows the
processing method for exact match queries.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel multi-index search
  There are two methods:
  Intersection method: all indexed attributes in the search predicate are first

searched independently. Each search predicate will form a list of index
entry results found after traversing each index. After all indexes have been
processed, the results from one index tree will be intersected with the
results of other index trees to produce a final list

  One-index method: Just use one of the indexes

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel multi-index search (using the Intersection method)
  Since multiple indexes are used, there is a possibility that different indexing

structures are used by each indexed attribute:

  Case 1 (one index is based on NRI-1, PRI-1, or FRI-1):
 Processor involvement: If the second indexing structure is NRI-2, PRI-2,
or FRI-3, only those processors used for processing the first search
attribute (which uses either NRI/PRI/FRI-1) will need to be activated. This is
“early intersection”
 Intersection operation: for NRI-3 and PRI-3, the leaf nodes found in the
index traversal must be sent to the processors where the actual records
reside, so that the intersection operation can be carried out there. Leaf
node transfer is not required for NRI-2, PRI-2, or even FRI-3.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel multi-index search (using the Intersection method)
  Case 2 (one index is based on NRI-3, PRI-3, or FRI-3):

 Applicable to the first index based on NRI/PRI/FRI-3 and the other
indexes based on any other indexing structures, including NRI/PRI/FRI-3,
but excluding NRI/PRI/FRI-1. The combination between NRI/PRI/FRI-3 and
NRI/PRI/FRI-1 has already been covered by case 1

 Processor involvement: No “early intersection”

 Intersection operation: particularly for NRI/PRI-3, it will be carried out as
for case 1; that is, leaf nodes found in the searching process will need to be
sent to where the actual records are stored and the intersection will be
locally performed there.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel multi-index search (using the Intersection method)
  Case 3 (one index is based on NRI-2 or PRI-2):

 Processor involvement: No “early intersection” since none of NRI/PRI/
FRI-1 is used

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

  Parallel multi-index search (using the One-Index method)
  Two main factors:

  The selectivity factor of each search predicate: it will be ideal to choose
a search predicate which has the lowest selectivity ratio, with a
consequence that most records have already been filtered out by this
search predicate and hence less work will be done by the rest of the search
predicates

  The indexing structure which is used by each search predicate: It will be
ideal to use an indexing structure which uses selected processors, local
index traversals, and local record loading

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.5. Parallel Search using Index (contʼd)

7.6. Parallel Join using Index
  Parallel one-index join

  Involves one non-indexed table (say table R) and one indexed table (say
table S)

  Parallel two-index join
  Both tables are indexed by the join attribute

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel One-Index Join
  Data partitioning and local join steps
  In the data partitioning step, depending on which parallel indexing scheme

is used by table S, data partitioning to table R may or may not be
conducted.

  Case 1 (NRI-1 and NRI-3):
 Records of table R are re-partitioned according to the same range
partitioning function used by table S. Both the records and index tree of
table S are not at all mutated. At the end of the data partitioning step, each
processor will have records R and index tree S having the same range of
values of the join attribute.

  Case 2 (NRI-2):
 Broadcast the non-indexed table R has to be broadcast to all processors

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.6. Parallel Join using Index (contʼd)

  Parallel One-Index Join
  Case 3 (PRI):

 If table S is indexed using any of the PRI structures, the non-indexed table
R do not need to be re-distributed, since by using a PRI structure, the
global index is maintained and more importantly the root index node is
replicated to all processors so that tracing to any leaf node can be done
from any root node at any processor.

  Case 4 (FRI):
 If table S is indexed using any of the FRI structures (i.e. FRI-1 or FRI-3),
like Case 3, the non-indexed table R is not redistributed either.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.6. Parallel Join using Index (contʼd)

  Parallel One-Index Join
  In the local join step, each processor performs its joining operation

independently of the others. Using a nested block index join method as
described earlier, for each record R, search for a matching index entry of
table S. If a match is found, depending on the location of the record (i.e.
whether it is located at the same place as the leaf node of the index), record
loading is performed.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.6. Parallel Join using Index (contʼd)

  Parallel Two-Index Join
  Each processor performs an independent merging of the leaf nodes, and

the final query result is the union of all temporary results gathered by each
processor.

  Case 1 (all index structures, except NRI-2 and PRI-2):
 Whichever parallel indexing structure is used, they must adopt the same
index partitioning function.The main processing is a merging operation of
the leaf nodes of the two index trees in each processor.

  Case 2 (NRI-2 or PRI-2):
 Unfortunately, parallel two-index join query processing cannot make use
of these indexes. Therefore, NRI-2 and PRI-2 are useless for parallelizing
two-index join query processing.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.6. Parallel Join using Index (contʼd)

7.7. Comparative Analysis
  Parallel search index

  Parallel one-index search
  Parallel multi-index search (Intersection method, One-index method)

  Parallel join index

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel One-Index Search
  Processor involvement, index traversal, and record loading
  Shaded cells show more expensive operations in comparison with others

within the same operation

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.7. Comparative Analysis (contʼd)

NRI Schemes PRI Schemes FRI Schemes
NRI-1 NRI-2 NRI-3 PRI-1 PRI-2 PRI-3 FRI-1 FRI-3

Processor
Involvement

Selected
processors

All
processors

Selected
processors

Selected
processors

Selected
processors

Selected
processors

Selected
processors

Selected
processors

Index
Traversal

Local
search

Local
search

Local
search

Local
search

Remote
search

Local
search

Local
search

Local
search

Record
Loading

Local
record load

Local
record load

Remote
record load

Local
record load

Local
record load

Remote
record load

Local
record load

Remote
record load

Figure 7.24. A Comparative Table for Parallel One-Index Selection Query Processing

  Parallel Multi-Index Search
(with Intersection method)

  Individual index searching
  Intersection operation

  Case 1: one index based on NRI-1,
PRI-1, or FRI-1

  Case 2: one index based on NRI-3,
PRI-3, or FRI-3

  Case 3: one index based on NRI-2
or PRI-2

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.7. Comparative Analysis (contʼd)

  Parallel Multi-Index Search (with One-Index method)
  The main aim is to minimize I/O, The first search predicate, which uses an

index, should have the smallest selectivity ratio.
  The smallest selectivity ratio is given by an exact match search with unique

records, and the most efficient indexing structure is NRI/PRI/FRI-1. This is
the most preferable indexing structure.

  The next preferable option is exact match search of non-unique records or
continuous range search predicates depending on the selectivity ratio using
NRI-2/3 or PRI-2/3 or FRI-3.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.7. Comparative Analysis (contʼd)

NRI Schemes PRI Schemes FRI Schemes
NRI-1 NRI-2 NRI-3 PRI-1 PRI-2 PRI-3 FRI-1 FRI-3

Exact Match
Search
Queries

Isolated
record
loading

Record
loading
possibly
spread (if

non-unique)

Record
loading
possibly
spread (if

non-unique)

Isolated
record
loading

Record
loading
possibly
spread (if

non-unique)

Record
loading
possibly
spread (if

non-unique)

Isolated
record
loading

Record
loading
possibly
spread (if

non-unique)
Continuous

Range
Search
Queries

Record
loading
possibly

spread, but
not random

Record
loading
possibly
spread

randomly

Record
loading
possibly
spread

randomly

Record
loading
possibly

spread, but
not random

Record
loading
possibly
spread

randomly

Record
loading
possibly
spread

randomly

Record
loading
possibly

spread, but
not random

Record
loading
possibly
spread

randomly
Figure 7.26. A Comparative Table for Parallel Multi-Index Selection Query
Processing using a One-Index Access Method

  Parallel Index Join
  Parallel one-index join: Data partitioning, local join and indexed table

searching
  Paralel two-index join: Merging, searching start/end values, and data

loading

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

7.7. Comparative Analysis (contʼd)

NRI Schemes PRI Schemes FRI Schemes
NRI-1 NRI-2 NRI-3 PRI-1 PRI-2 PRI-3 FRI-1 FRI-3

Data partitioning Partition Broadcast Partition No
Partition

No
Partition

No
Partition

No
Partition

No
Partition

Indexed table
searching

Local
search

Local
search

Local
search

Remote
search

Remote
search

Remote
search

Local
search

Local
search

Parallel
One-Index

Join Local
join

Indexed table
record loading

Local data
load

Local data
load

Remote
data load

Remote
data load

Remote
data load

Remote
data load

Remote
data load

Remote
data load

Searching start
and end values

Not
necessary

Not
necessary

Not
necessary

Not
necessary

Searching
needed

Searching
needed

Parallel
Two-Index

Join

Merging

Data loading Local data
load

N/A

Remote
data load

Local data
load

N/A

Remote
data load

Local data
load

Remote
data load

Figure 7.27. A Comparative Table for Parallel Index-Join Query Processing

7.8. Summary
  Parallel indexing structures

  NRI, PRI, and FRI

  Parallel indexing maintenance
  Insertion and deletion operations

  Parallel indexing storage
  Storage for tables and for indices

  Parallel index-search query processing
  One-index search and multiple-index search

  Parallel index-join query processing
  Parallel one-index join and two-index join

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Continue to Chapter 8…

Chapter 16
Parallel Data

Mining

16.1 From DB to DW to DM
16.2 Data Mining: A Brief Overview
16.3 Parallel Association Rules
16.4 Parallel Sequential Patterns
16.5 Summary
16.6 Bibliographical Notes
16.7 Exercises

16.1. Data-Intensive Applications

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  All of the three: databases, data warehouses, and data
mining, deal with data.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Databases are commonly deployed in almost every
organization. In a simple form, databases are referred to as
data repositories. Database processing are queries, and
transactions. The data contained in a database is normally
operational data.

16.1. Data-Intensive Applications (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data warehouse provides information from a historical
perspective, whereas an operational database keeps data of
current value. The process involves: data extraction, filtering,
transforming, integrating from various sources, classifying
the data, aggregating and summarizing the data. The result
is a data warehouse where the data is integrated, time-
variant, non-volatile, and commonly subject-oriented.

16.1. Data-Intensive Applications (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data mining analyzes a large amount of data stored in
databases to discover interesting knowledge in the form of
patterns, association, changes, anomalies, significant
structures, etc. Data mining is also known as knowledge
discovery, or more precisely, knowledge discovery of data.

16.1. Data-Intensive Applications (contʼd)

16.2. Data Mining: A Brief Overview

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data mining is a process for discovering useful, interesting,
and sometimes surprising knowledge from a large collection
of data.

  Data Mining Tasks
  Descriptive data mining: describes the data set in a concise manner

and presents interesting general properties of the data; summarizes
the data in terms of its properties and correlation with others.

  Predictive data mining: Predictive data mining builds a prediction
model whereby it makes inferences from the available set of data, and
attempts to predict the behaviour of new data sets.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data Mining Techniques
  Class description or characterization summarizes a set of data in a

concise way that distinguishes this class from others.
  Association rules discover association relationships or correlation

among a set of items.
  Classification analyzes a set of training data and constructs a model

for each class based on the features in the data.
  Prediction predicts the possible values of some missing data or the

value distribution of certain attributes in a set of objects.
  Clustering is a process to divide the data into clusters, whereby a

cluster contains a collection of data that is similar to one another.
  Time-series analysis analyzes a large set of time series data to find

certain regularities and interesting characteristics.

16.2. Data Mining: A Brief Overview (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Querying vs. Mining
  Although it has been stated that the purpose of mining (or data mining)

is to discover knowledge, it should be differentiated from querying (or
database querying), which simply retrieves data.

  In some cases, this is easier said than done. Consequently,
highlighting the differences is critical in studying both database
querying and data mining. The differences can generally be
categorized into: unsupervised and supervised learning.

16.2. Data Mining: A Brief Overview (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Unsupervised Learning
  Unsupervised learning is whereby the learning process is not guided,

or even dictated, by the expected results. To put it in another way,
unsupervised learning does not require a hypothesis. Exploring the
entire possible space in the jungle of data might be overstating, but
can be analogous that way.

  Association rule mining vs. Database querying: Given a database
D, association rule mining produces an association rule Ar(D) = X→Y,
where X,Y ∈ D. A query Q(D, X) = Y produces records Y matching the
predicate specified by X.
 The pattern X→Y may be based on certain criteria, such as: majority,
minority, absence, exception

16.2. Data Mining: A Brief Overview (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Unsupervised Learning
  Sequential patterns vs. Database querying: Given a database D, a

sequential pattern Sp(D) = O:X→Y, where O indicates the owner of a
transaction and X,Y ∈ D. A query Q(D, X, Y) = O, or Q(D, aggr) = O,
where aggr indicates some aggregate functions.

  Clustering vs. Database querying: Given database D, a clustering
 , where it produces n clusters each of which consists of
a number of items X. A query Q(D, X1) = {X2, X3, X4, …}, where it
produces a list of items {X2, X3, X4, …} having the same cluster as the
given item X1.

16.2. Data Mining: A Brief Overview (contʼd)

€

Cl D() = Xi1,Xi2,…{ }
i=1

n

∑

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Supervised Learning
  Supervised learning is naturally the opposite of unsupervised learning,

since supervised learning starts with a direction pointing to the target.

  Decision tree classification vs. Database querying: Given database
D, a decision tree Dt(D, C) = P, where C is the given category and P is
the result properties. A query Q(D, P) = R, is where the property is
known in order to retrieve records R.

16.2. Data Mining: A Brief Overview (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallelism in Data Mining
  Large volume of data
  High dimension (large number of attributes)
  High degree of complexity (not previously found or applicable to

databases or even data warehousing)
  Even a simple data mining technique requires a number of iterations of

the process, and each of the iterations refines the results until the
ultimate results are generated

  Parallelism in data mining: data parallelism and result parallelism

16.2. Data Mining: A Brief Overview (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data Parallelism
  Data parallelism is created because

the data is partitioned into a number
of processors and each processor
focuses on its partition of the data set.

  After each processor completes its
local processing and produces the
local results, the final results are
formed basically by combining all
local results.

  Since data mining processes normally
exist in several iterations, data
parallelism raises some complexities,
not commonly found in database
query processing.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Result Parallelism
  Result parallelism focuses on

how the target results can be
parallelized during the processing
stage without having produced
any results or temporary results.

  Result parallelism works by
partitioning the target results, and
each processor focuses on its
target result partition.

  Each processor will do whatever
it takes to produce the result
within the given range, and will
take any input data necessary to
produce the desired result space.

16.3. Parallel Association Rules

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  To discover rules based on the correlation between different
attributes/items found in the dataset

  Two phases: (i) phase one: discover frequent itemsets from
a given dataset, and (ii) phase two: generate rules from
these frequent itemsets.

  The first phase is widely recognized as being the most
critical, computationally intensive task. Since the frequent
itemset generation phase is computationally expensive, most
work on association rules, including parallel association
rules, have been focusing on this phase only. Improving the
performance of this phase is critical to the overall
performance.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Some measurements
  Support and minimum support
  Confidence and minimum confidence
  Frequent Itemset: An itemset in a dataset is considered as frequent if

its support is equal to, or greater than, the minimum support threshold
specified by the user.

  Candidate Itemset: Given a database D and a minimum support
threshold minsup and an algorithm that computes F(D, minsup), an
itemset I is called candidate for the algorithm to evaluate whether or
not itemset I is frequent.

  Association rules: At a given user-specified minimum confidence
threshold minconf, find all association rules R from a set of frequent
itemset F such that each of the rules has confidence equal to, or
greater than minconf.

16.3. Parallel Association Rules (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example

16.3. Parallel Association Rules (contʼd)
Transaction ID Items Purchased
100 bread, cereal, milk
200 bread, cheese, coffee, milk
300 cereal, cheese, coffee, milk
400 cheese, coffee, milk
500 bread, sugar, tea

Figure 16.5. Example Dataset

Frequent Itemset Support
bread 60%
cereal 40%
cheese 60%
coffee 60%
milk 80%
bread, milk 40%
cereal, milk 40%
cheese, coffee 60%
cheese, milk 60%
coffee, milk 60%
cheese, coffee, milk 60%

Figure 16.6. Frequent Itemset

Association Rules Confidence
breadmilk 67%
cerealmilk 100%
cheesecoffee 100%
cheesemilk 100%
coffeemilk 100%
coffeecheese 100%
milkcheese 75%
milkcoffee 75%
cheese, coffeemilk 100%
cheese, milkcoffee 100%
coffee, milkcheese 100%
cheesecoffee, milk 100%
coffeecheese, milk 100%
milkcheese, coffee 75%

Figure 16.7. Association Rules

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Frequent itemset process
  Iteration 1: scan the dataset and finds

all frequent 1-itemset
  Iteration 2: join each frequent 1-

itemset and generates candidate 2-
itemset. Then it scans the dataset
again, enumerates the exact support
of each of these candidate itemsets
and prunes all infrequent candidate
2-itemsets.

  Iteration 3: joins each of the frequent
2-itemset and generates the following
potential candidate 3-itemset. Prunes
those candidate 3-itemset that do not
have a subset itemset in F2. Scans
the dataset and finds the exact
support of that candidate itemset. It
finds that this candidate 3-itemset is
frequent. In the joining phase, Cannot
produce any candidate itemset for
the next iteration.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Rules generation
  Using the frequent itemset {cheese coffee milk}, the following three

rules hold, since the confidence is 100%
cheese, coffee → milk
cheese, milk → coffee
coffee, milk → cheese

  Then we use the apriori_gen() function to generate all candidate 2-
itemsets, resulting {cheese milk} and {coffee milk}. After confidence
calculation, the following two rules hold:

coffee → cheese, milk (confidence=100%)
cheese → coffee, milk (confidence=75%)

  Therefore, from one frequent itemset {cheese coffee milk} alone, five
association rules shown above have been generated (see Figure 16.7)

16.3. Parallel Association Rules (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Association Rules
  Data parallelism for association rule mining is often referred to as

count distribution
  Result parallelism is widely known as data distribution.

16.3. Parallel Association Rules (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Data Parallelism (or Count
Distribution)

  Each processor will have a disjoint
data partition to work with. Each
processor, however, will have a
complete candidate itemset, although
with partial support or support count.

  At the end of each iteration, since the
support or support count of each
candidate itemset in each processor
is incomplete, each processor will
need to ‘redistribute’ the count to all
processors. Hence, the term ‘count
distribution’ is used.

  This global result reassembling stage
is basically to redistribute the support
count which often means global
reduction to get global counts. The
process in each processor is then
repeated until the complete frequent
itemset is ultimately generated.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Result Parallelism (or Data
Distribution)

  Data distribution parallelism is based
on result parallelism whereby
parallelism is created due to the
partition of the result, instead of the
data. However, the term ‘data
distribution’ might be confused with
data parallelism (count distribution).

  Initially, the dataset has been
partitioned. However, each processor
needs to have not only its local
partition, but all other partitions from
other processors.

  At the end of each iteration, where
each processor will produce its own
local frequent itemset, each
processor will also need to send to all
other processors its frequent itemset,
so that all other processors can use
this to generate its own candidate
itemset for the next iteration.

16.4. Parallel Sequential Patterns

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Sequential patterns, also known as sequential rules, are
very similar to association rules. They form a causal
relationship between two itemsets, in a form of X→Y, where
because X occurs, it causes Y to occur with a high
probability.

  Association rules are intra-transaction patterns or
sequences, where the rule X→Y indicates that both items X
and Y must exist in the same transaction.

  Sequential pattern are inter-transaction patterns or
sequences. The same rule above indicates that since item X
exists, this will lead to the existence of item Y in the near
future transaction.

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example

16.4. Parallel Sequential Patterns (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Concepts
  Given a set of transactions D each of which consists of the following

fields: customer ID, transaction time, and the items purchased in the
transaction, mining sequential patterns is used to find the inter-
transaction patterns/sequences that satisfy minimum support minsup,
minimum gap mingap, maximum gap maxgap, and window size wsize
specified by the user.

16.4. Parallel Sequential Patterns (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Concepts
  A sequence s is an ordered list of itemsets i.
  Containment: <(5 6) (7)> is contained in <(4 5) (4 5 6 7) (7 9 10)>, because

(5 6) ⊆ (4 5 6 7) and (7) ⊆ (7 9 10). Whereas <(3 5)> is not contained in <(3)
(5)>.

  Four important parameters in mining sequential patterns: support,
window size, minimum gap, and maximum gap.

16.4. Parallel Sequential Patterns (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Example

16.4. Parallel Sequential Patterns (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Sequential Patterns Process
  Phase 1: k=1
  Phase 2: k>1

16.4. Parallel Sequential Patterns (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Processing
  Data parallelism (or count distribution)
  Result parallelism (or data distribution)

16.4. Parallel Sequential Patterns (contʼd)

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

  Parallel Processing
  Data parallelism (or count distribution)
  Result parallelism (or data distribution)

16.4. Parallel Sequential Patterns (contʼd)

16.5. Summary
  Parallelism in data mining

  Data parallelism: Data parallelism in association rules and sequential
patterns is often known as count distribution where the counts of candidate
itemsets in each iteration are shared and distributed to all processors.
Hence, there is a synchronization phase.

  Result parallelism: Result parallelism, on the other hand, is parallelization
of the results (i.e. frequent itemset and sequence itemset). This parallelism
model is often known as data distribution, where the dataset and frequent
itemsets are distributed and moved from one processor to another at the
end of each iteration.

  Parallel association rules and parallel sequential patterns using
data and result parallelism

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008

Continue to Chapter 17…

	Ch00
	Ch01
	Ch02
	Ch03
	Ch04
	Ch05
	Ch07
	Ch16

