


Preface 
  Exponential growth of data volume, steady drop in storage costs, 

and rapid increase in storage capacity 
  Inadequacy of the sequential processing paradigm 

  Example: Assuming a data rate of 1 terabyte/sec, reading through a 
petabyte database will take over 10 days 

  Parallel machines in the past, and parallel facilities in today’s 
commercial DBMS 

  Importance of understanding high-performance and parallel 
database processing systems 

  Grid as global and distributed data centres 
  New application domains (data-intensive applications): data 

warehousing and online analytic processing, and data mining 
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Let’s go to Chapter 1… 



Chapter 1 
Introduction 

1.1  A Brief Overview - Parallel Databases and Grid 
Databases 

1.2  Parallel Query Processing: Motivations 
1.3  Parallel Query Processing: Objectives 
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1.7  Structure of this Book 
1.8  Summary 
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1.1. A Brief Overview 
  Moore’s Law: number of processors will double every 18-24 

months 
  CPU performance would increase by 50-60% per year 
  Mechanical delays restrict the advancement of disk access time 

or disk throughput (8-10% only) 
  Disk capacity also increases at a much higher rate 
  I/O becomes a bottleneck 
  Hence, motivates parallel database research 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Parallel Database Systems: 
  Single administrative domain 
  Homogeneous working environment 
  Close proximity of data storage 
  Multiple processors 

  Grid Database Systems: 
  Heterogeneous collaboration of resources 
  Provide seamless access to geographically distributed data sources 

1.1. A Brief Overview (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



1.2. Motivations 
  An example: 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  What is parallel processing, and why not just use a faster 
computer ? 

  Even fast computers have speed limitations 
  Limited by speed of light 
  Other hardware limitations 

  Parallel processing divides a large task into smaller subtasks 
  Database processing works well with parallelism (coarse-grained 

parallelism) 
  Lesser complexity but need to work with a large volume of data 

1.2. Motivations (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



1.3. Objectives 
  The primary objective of parallel database processing is to gain 

performance improvement 
  Two main measures: 

  Throughput: the number of tasks that can be completed within a 
given time interval 

  Response time: the amount of time it takes to complete a single 
task from the time it is submitted 

  Metrics: 
  Speed up 
  Scale up 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 
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  Speed up 
  Performance improvement gained because of extra processing elements 

added 
  Running a given task in less time by increasing the degree of parallelism 

  Linear speed up: performance improvement growing linearly with 
additional resources 

  Superlinear speed up 
  Sublinear speed up 

1.3. Objectives (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Scale up 
  Handling of larger tasks by increasing the degree of parallelism 
  The ability to process larger tasks in the same amount of time by providing 

more resources. 

  Linear scale up: the ability to maintain the same level of 
performance when both the workload and the resources are 
proportionally added 

  Transactional scale up 
  Data scale up 

1.3. Objectives (contʼd) 
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  Transaction scale up 
  The increase in the rate at which the transactions are processed 
  The size of the database may also increase proportionally to the 

transactions’ arrival rate 
  N-times as many users are submitting N-times as many requests or 

transactions against an N-times larger database 
  Relevant to transaction processing systems where the transactions are 

small updates 

  Data scale up 
  The increase in size of the database, and the task is a large job who 

runtime depends on the size of the database (e.g. sorting) 
  Typically found in online analytical processing (OLAP) 

1.3. Objectives (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Parallel Obstacles 
  Start-up and Consolidation costs, 
  Interference and Communication, and 
  Skew 

1.3. Objectives (contʼd) 
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  Start-up and Consolidation 
  Start up: initiation of multiple processes 
  Consolidation: the cost for collecting results obtained from each processor 

by a host processor 

1.3. Objectives (contʼd) 
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  Interference and Communication 
  Interference: competing to access shared resources 
  Communication: one process communicating with other processes, and 

often one has to wait for others to be ready for communication (i.e. waiting 
time). 

1.3. Objectives (contʼd) 
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  Skew 
  Unevenness of workload 
  Load balancing is one of the critical factors to achieve linear speed up 

1.3. Objectives (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



1.4. Forms of Parallelism 
  Forms of parallelism for database processing: 

  Interquery parallelism 
  Intraquery parallelism 
  Interoperation parallelism 
  Intraoperation parallelism 
  Mixed parallelism 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Interquery Parallelism 
  “Parallelism among queries” 
  Different queries or transactions are executed in parallel with one another 
  Main aim: scaling up transaction processing systems 

1.4. Forms of Parallelism (contʼd) 
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  Intraquery Parallelism 
  “Parallelism within a query” 
  Execution of a single query in parallel on multiple processors and disks 
  Main aim: speeding up long-running queries 

1.4. Forms of Parallelism (contʼd) 
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  Execution of a single query can be parallelized in two ways: 

  Intraoperation parallelism: Speeding up the processing of a query by 
parallelizing the execution of each individual operation (e.g. parallel sort, 
parallel search, etc) 

  Interoperation parallelism: Speeding up the processing of a query by 
executing in parallel different operations in a query expression (e.g. 
simultaneous sorting or searching) 

1.4. Forms of Parallelism (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Intraoperation Parallelism 
  “Partitioned parallelism” 
  Parallelism due to the data 

being partitioned 
  Since the number of records 

in a table can be large, the 
degree of parallelism is 
potentially enourmous 

1.4. Forms of Parallelism (contʼd) 
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  Interoperation parallelism: Parallelism created by concurrently 
executing different operations within the same query or transaction 

  Pipeline parallelism 
  Independent parallelism 

1.4. Forms of Parallelism (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Pipeline Parallelism 
  Output record of one operation 

A are consumed by a second 
operation B, even before the 
first operation has produced 
the entire set of records in its 
output 

  Multiple operations form some 
sort of assembly line to 
manufacture the query results 

  Useful with a small number of 
processors, but does not scale 
up well 

1.4. Forms of Parallelism (contʼd) 
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  Independent Parallelism 
  Operations in a query that do 

not depend on one another are 
executed in parallel 

  Does not provide a high 
degree of parallelism  

1.4. Forms of Parallelism (contʼd) 
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  Mixed Parallelism 
  In practice, a mixture of all available parallelism forms is used. 

1.4. Forms of Parallelism (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



1.5. Parallel Database Architectures 
  Parallel computers are no longer a monopoly of supercomputers 
  Parallel computers are available in many forms: 

  Shared-memory architecture 
  Shared-disk architecture 
  Shared-nothing architecture 
  Shared-something architecture 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Shared-Memory and Shared-Disk Architectures 
  Shared-Memory: all processors share a common main memory and 

secondary memory 
  Load balancing is relatively easy to achieve, but suffer from memory and 

bus contention 
  Shared-Disk: all processors, each of which has its own local main memory, 

share the disks 

1.5. Parallel Database Architectures (contʼd) 
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  Shared-Nothing Architecture 
  Each processor has its own local main memory and disks 
  Load balancing becomes difficult 

1.5. Parallel Database Architectures (contʼd) 
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  Shared-Something Architecture 
  A mixture of shared-memory and shared-nothing architectures 
  Each node is a shared-memory architecture connected to an 

interconnection network ala shared-nothing architecture 

1.5. Parallel Database Architectures (contʼd) 
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  Interconnection Networks 
  Bus, Mesh, Hypercube 

1.5. Parallel Database Architectures (contʼd) 
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1.6. Grid Database Architecture 
  Wide geographical area, autonomous and heterogeneous 

environment 
  Grid services (Meta-repository services, look-up services, replica 

management services, …) 

  Grid middleware 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



1.7. Structure of the book 
  Part I: Introduction and analytical models 
  Parts II and III: Parallel query processing, including parallel 

algorithms and methods for all important database processing 
operations 

  Part IV: Grid transaction management, covering the ACID 
properties of transaction as well as replication in Grid 

  Part V: Parallelism of other data-intensive applications (OLAP 
and data mining) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



1.8. Summary 
  Why, What, and How of parallel query processing: 

  Why is parallelism necessary in database processing? 

  What can be achieved by parallelism in database processing? 

  How parallelism performed in database processing? 

  What facilities of parallel computing can be used? 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



Continue to Chapter 2… 
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2.1. Cost Models 
  Cost equations/formulas to calculate the elapsed time of a query 

using a particular parallel algorithm for processing 
  Composed of variables to be substituted with specific values at 

runtime of the query 
  Although cost models may be used to estimate the performance 

of a query, the primary intention is to use them to describe the 
process involved and for comparison purposes 

  Cost models serve as tools to examine every cost factor in more 
detail 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



2.2. Cost Notations 
  Cost equations consists of a 

number of components: 
  Data parameters 
  Systems parameters 
  Query parameters 
  Time unit costs 
  Communications costs 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Data parameters 
  Number of records in a table (|R|), and 
  Actual size (in bytes) of the table (R). 

  Data processing in each processor is based on number of records 
(record level) 

  I/O and data distribution in an interconnected network is done at a 
page level 

  Use |S|) and S to indicate a second table 

  Use |Ri| and Ri to indicate largest fragment size located in a processor 
  Important factor: skewness 

2.2. Cost Notations (contʼd) 
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  Systems parameters 
  Number of processors (N) 

  For example: |R| = 1,000,000; N = 10 
  Uniform distribution: |Ri| = |R| / N  

(|Ri| = 1,000,000/10 = 100,000 records) 

  Skewed distribution: |R| divided by 5 (for example),  
hence |Ri| = 200,000 records 

  The actual number of the divisor must be modeled correctly 

2.2. Cost Notations (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Systems parameters 
  Page size (P): the size of one data page in byte, which contains a batch 

of records 
  When records are loaded from disk to main memory, it is not loaded 

record by record, but page by page 
  R = 4 gigabytes, P = 4 kilobytes, hence R / P = 10242 number of pages 

  Hash table size (H): maximum size of the hash table that can fit into the 
main memory 

  H = 10,000 records 

2.2. Cost Notations (contʼd) 
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  Query parameters 
  Projectivity ratio (π), and 
  Selectivity ratio (σ). 

  The value for π and σ is between 0 and 1 

  R = 100 bytes, output record size = 45 bytes; 
hence π = 0.45 

  |Ri| = 1000 records, query results = 4 records;  
hence σ = 4/1000 = 0.004 

2.2. Cost Notations (contʼd) 
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  Time unit costs 
  Time to read from or write to a page on disk (IO); 

e.g. reading a whole table from disk to main memory is R / P x IO, or in a 
multiprocessor environment, it is Ri / P x IO 

  Time to read a record from main memory (tr) 
  Time to write a record to main memory (tw) 

  Time to perform a computation in the main memory 

  Time to find out the destination of a record (td) 

2.2. Cost Notations (contʼd) 
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  Communication costs 
  Message protocol cost per page (mp): initiation for a message transfer 
  Message latency cost per page (ml): actual message transfer time 
  Both elements work at a page level, as with the disk 

  Two components: one for the sender, and the other for the receiver 
  To send a whole table, the sender cost is R / P x (mp + ml) 
  The receiver cost is R / P x mp 

  In a multiprocessor environment, the sender cost is determined by the 
heaviest processor, e.g. p1 x (mp + ml), where p1 is the number of records 
to be distributed from the heaviest processor 

  But the receiving cost is not p1 x mp, because the heaviest processor 
receiving records might be a different processor with a different number of 
received records. Hence, receiving cost is p2 x ml, where p1 ≠ p2 

2.2. Cost Notations (contʼd) 
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2.3. Skew Model 
  A major problem in parallel processing 
  The non-uniformity of workload distribution among processing 

elements 
  Two kinds of skew: 

  Data skew 
  Processing skew 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Data skew 
  Caused by unevenness of data placement in a disk in each local 

processor, or by the previous operator 

  Although initial data placement is even, other operators may have 
rearranged the data, and data skew may occur as a result 

2.3. Skew Model (contʼd) 
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  Processing skew 
  Caused by unevenness of the processing itself, and may be propagated by 

the data skew initially 
  Zipf distribution model to model skew 
  Measured in terms of different sizes of fragments allocated to the 

processors 

  The symbol θ denotes the degree of skewness, where θ = 0 indicates no 
skew, and θ = 1 indicates highly skewed 

2.3. Skew Model (contʼd) 
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  Processing skew 
  When θ = 1, the fragment sizes follow a pure Zipf distribution: 

  where γ = 0.57721 (Euler’s constant) and HN is the harmonic number 
(approx γ + ln N) 

  In case θ > 0, |R1| is the largest fragment, and |RN| is the smallest 
  Hence load skew: 

2.3. Skew Model (contʼd) 
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  Processing skew 
  For simplicity, we use |Ri| instead of |Rmax| 
  No skew: 

  Highly skewed: 

2.3. Skew Model (contʼd) 
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  Example 
  |R|=100,000 records, N=8 processors 

2.3. Skew Model (contʼd) 
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  No skew vs. highly skewed 

2.3. Skew Model (contʼd) 
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  No skew vs. highly skewed 

2.3. Skew Model (contʼd) 
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  No skew vs. highly skewed 

2.3. Skew Model (contʼd) 
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2.4. Basic Operations 
  Operations in parallel database systems normally follow these 

steps: 
  Data loading (scanning) from disk, 
  Getting records from data page to main memory, 
  Data computation and data distribution, 
  Writing records (query results) from main memory to data page, and 
  Data writing to disk. 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Disk operations 
  Disk reading and writing is based on page (I/O page) (P) 
  Based on the heaviest processor (Ri) 
  Uniform distribution: Ri = R / N 
  Skewed distribution: Ri = R / (γ + ln N) 

  Scanning cost = Ri / P x IO 

  Writing cost = (data computation variables x Ri) / P x IO, 
where 0.0 ≤ data computation variable ≤ 1.0 
data computation variable = 0.0 means that no records exist in the query 
results, whereas data computation variable = 0.0 indicates that all records 
are written back to disk. 

2.4. Basic Operations (contʼd) 
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  Main memory operations 
  Once the data has been loaded from the disk, the record has to be removed 

from the data page and placed in main memory (select cost) 
  Main memory operations are based on records (|Ri|), not on pages (Ri) 
  The reading unit cost (tr) is the reading operation of records from the data 

page, the writing unit cost (tw) is to actually write the record to main 
memory  

  Select cost = |Ri| x (tr + tw) 

  Only writing unit cost is involved, and not reading unit cost, as the reading 
unit cost is already part of the computation 

  Query results generation cost = (data computation variables x |Ri|) x tw 

2.4. Basic Operations (contʼd) 
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  Data computation and data distribution 
  Data computation cost is the cost of basic database operations 
  Works in main memory, and hence uses the number of records 
  Each data computation operation may involve several basic costs (unit 

costs for hashing, for adding the current record to the aggregate value, …) 
  Data computation unit cost is tx, and |Ri| may be skewed 
  Data computation cost = |Ri| x (tx) 

  Data distribution is record transmission from one processor to another 
  Involves two costs: the cost associated with determining where each record 

goes, and the actual data transmission itself 
  The former works in main memory (number of records), the latter is based 

on number of pages 
  Determining the destination cost = |Ri| x (td) 
  Data transmission costs (communication costs) have been explained in 

section 2.2 previously 

2.4. Basic Operations (contʼd) 
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2.5. Summary 
  Basic cost notations 

  Parameters, such as data parameters, systems parameters, query 
parameters, time unit costs, and communication costs 

  Skew model 
  Zipf distribution model 

  Basic parallel database processing costs 
  General steps of parallel database processing, such as disk costs, main 

memory costs, data computation costs, and data distribution costs 
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3.1. Search Queries 
  Search is selection operation in database queries 
  Selects specified records based on a given criteria 
  The result is a horizontal subset (records) of the operand 

  Three kinds of search queries: 
  Exact-match search 
  Range search 
  Multi attribute search 
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  Exact-Match Search 
  Selection predicate on an attribute to check for an exact match 

between a search attribute and a given value 
  Expressed by the WHERE clause in SQL 

  Query 3.1 will produce a unique record (if the record is found), 
whereas Query 3.2 will likely produce multiple records 

3.1. Search Queries (contʼd) 
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  Range Search Query 
  The search covers a certain range 
  Continuous range search query 

  Discrete range search query 

3.1. Search Queries (contʼd) 
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  Multiattribute Search Query 
  More than attribute is involved in the search 
  Conjunctive (AND) or Disjunctive (OR) 
  If both are used, it must be in a form of conjunctive prenex normal form 

(CPNF) 

3.1. Search Queries (contʼd) 
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3.2. Data Partitioning 
  Distributes data over a number of processing elements 
  Each processing element is then executed simultaneously with 

other processing elements, thereby creating parallelism 
  Can be physical or logical data partitioning 
  In a shared-nothing architecture, data is placed permanently 

over several disks 
  In a shared-everything (shared-memory and shared-disk) 

architecture, data is assigned logically to each processor 
  Two kinds of data partitioning: 

  Basic data partitioning 
  Complex data partitioning 
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  Basic Data Partitioning 
  Vertical vs. Horizontal data partitioning 
  Vertical partitioning partitions the data vertically across all processors. 

Each processor has a full number of records of a particular table. This 
model is more common in distributed database systems  

  Horizontal partitioning is a model in which each processor holds a 
partial number of complete records of a particular table. It is more 
common in parallel relational database systems 

3.2. Data Partitioning (contʼd) 
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  Basic Data Partitioning 
  Round-robin data partitioning 
  Hash data partitioning 
  Range data partitioning 
  Random-unequal data partitioning 

3.2. Data Partitioning (contʼd) 
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  Round-robin data partitioning 
  Each record in turn is allocated to a processing element in a clockwise 

manner 
  “Equal partitioning” or “Random-equal partitioning” 
  Data evenly distributed, hence supports load balance 
  But data is not grouped semantically 

3.2. Data Partitioning (contʼd) 
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  Hash data partitioning 
  A hash function is used to partition the data 
  Hence, data is grouped semantically, that is data on the same group 

shared the same hash value 
  Selected processors may be identified when processing a search 

operation (exact-match search), but for range search (especially 
continuous range), all processors must be used 

  Initial data allocation is not balanced either 

3.2. Data Partitioning (contʼd) 
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  Range data partitioning 
  Spreads the records based on a given range of the partitioning 

attribute 
  Processing records on a specific range can be directed to certain 

processors only 
  Initial data allocation is skewed too 

3.2. Data Partitioning (contʼd) 
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  Random-unequal data partitioning 
  Partitioning is not based on the same attribute as the retrieval 

processing is based on  a nonretrieval processing attribute, or the 
partitioning method is unknown 

  The size of each partitioning is likely to be unequal 
  Records within each partition are not grouped semantically 
  This is common especially when the operation is actually an operation 

based on temporary results obtained from the previous operations 

3.2. Data Partitioning (contʼd) 
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  Basic Data Partitioning 
  Attribute-based data partitioning 
  Non-attribute-based data partitioning 

3.2. Data Partitioning (contʼd) 
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  Complex Data Partitioning 
  Basic data partitioning is based on a single attribute (or no attribute) 
  Complex data partitioning is based on multiple attributes or is based 

on a single attribute but with multiple partitioning methods 

  Hybrid-Range Partitioning Strategy (HRPS) 
  Multiattribute Grid Declustering (MAGIC) 
  Bubba’s Extended Range Declustering (BERB) 

3.2. Data Partitioning (contʼd) 
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  Hybrid-Range Partitioning Strategy (HRPS) 
  Partitions the table into many fragments using range, and the 

fragments are distributed to all processors using round-robin 
  Each fragment contains approx FC records 

Where RecordsPerQAve is the average number of records retrieved and 
processed by each query, and M is the number of processors that should 
participate in the execution of an average query 

  Each fragment contains a unique range of values of the partitioning 
attribute 

  The table must be sorted on the partitioning attribute, then it is 
partitioned that each fragment contains FC records, and the fragments 
are distributed in round-robin ensuring that M adjacent fragements 
assigned to different processors 

3.2. Data Partitioning (contʼd) 
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  Hybrid-Range Partitioning Strategy (HRPS) 
  Example: 10000 student records, and the partitioning attribute is 

StudentID (PK) that ranges from 1 to 10000. Assume the average 
query retrieves a range of 500 records (RecordsPerQ=500). Queries 
access students per year enrolment wth average results of 500 
records. Assume the optimal performance is achieved when 5 
processors are used (M=5) 

  The table will be partitioned into 100 fragments 
  Three cases: M = N, M > N, or M < N (where N is the number of 

processors in the configuration, and M is the number of processors 
participating in the query execution 

3.2. Data Partitioning (contʼd) 
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  Hybrid-Range Partitioning Strategy (HRPS) 
  Case 1: M = N 
  Because the query will overlap with 5-6 fragments, all processors will 

be used (high degree of parallelism) 
  Compared with hash partitioning: Hash will also use N processors, 

since it cannot localize the execution of a range query 
  Compared with range partitioning: Range will only use 1-2 processors, 

and hence the degree of parallelism is small 

3.2. Data Partitioning (contʼd) 
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  Hybrid-Range Partitioning Strategy (HRPS) 
  Case 2: M > N (e.g. M=5, and N=2) 
  HRPS will still use all N processors, because it enforces the constraint 

that the M adjacent fragments be assigned to different processors 
whenever possible 

  Compared with range partitioning: an increased probability that a 
query will use only one processor (in this example) 

3.2. Data Partitioning (contʼd) 
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  Hybrid-Range Partitioning Strategy (HRPS) 
  Case 3: M < N (e.g. M=5, and N=10) 
  HRPS distributes 100 fragments to all N processors. Since the query 

will overlap with only 5-6 fragments, each individual query is localized 
to almost the optimal number of processors 

  Compared with hash partitioning: Hash will use all N processors, and 
hence less efficient due to start up, communication, and termination 
overheads 

  Compared with range partitioning: The query will use 1-2 processors 
only, and hence less optimal 

3.2. Data Partitioning (contʼd) 
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  Hybrid-Range Partitioning Strategy (HRPS) 
  Support for Small Tables 

 If the number of fragments of a table is less than the number of 
processors, then the table will automatically be partitioned across a 
subset of the processors 

  Support for Tables with Nonuniform Distributions of the 
Partitioning Attribute Values 
 Because the cardinality of each fragment is not based on the value of 
the partitioning attribute value, once the HRPS determines the 
cardinality of each fragment, it will partition a table based on that value 

3.2. Data Partitioning (contʼd) 
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  Multiattribute Grid Declustering (MAGIC) 
  Based on multiple attributes - to support search queries based on 

either of data partitioning attributes 
  Support range and exact match search on each of the partitioning 

attributes 
  Example: Query 1 (one-half of the accesses) Slname=‘Roberts’, and 

Query 2 (the other half) SID between 98555 and 98600. Assume both 
queries produce only a few records 

  Create a two-dim grid with the two partitioning attributes (Slname and 
SID). The number of cells in the grid equal the number of processing 
elements 

  Determine the range value for each column and row, and allocate a 
processor in each cell in the grid 

3.2. Data Partitioning (contʼd) 
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  Multiattribute Grid Declustering (MAGIC) 
  Query 1 (exact match on Slname): Hash partitioning can localize the 

query processing on one processor. MAGIC will use 6 processors 
  Query 2 (range on SID): if the hash partitioning uses Slname, whereas 

the query is on SID, the query must use all 36 processors. MAGIC on 
the other hand, will only use 6 processors. 

  Compared with range partitioning, suppose the partitioning is based on 
SID, then Q1 will use 36 processors whilst Q2 will use 1 processor  

3.2. Data Partitioning (contʼd) 
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  Bubba’s Extended Range Declustering (BERB) 
  Another multiattribute partitioning method - used in the Bubba 

Database Machine 
  Two levels of data partitioning: primary and secondary data 

partitioning 
  Step 1: Partition the table based on the primary partitioning attribute 

and uses a range partitioning method 

3.2. Data Partitioning (contʼd) 
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  Bubba’s Extended Range Declustering (BERB) 
  Step 2: Each fragment is scanned and an ‘aux’ table is created from 

the attribute value of the secondary partitioning attribute and a list of 
processors containing the original records 

  Table 3.4 shows the ‘aux’ table (called Table IndexB) 

3.2. Data Partitioning (contʼd) 
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  Bubba’s Extended Range Declustering (BERB) 
  Step 3: The ‘aux’ table is range partitioned on the secondary 

partitioning attribute (e.g. Slname) 
  Step 4: Place the fragments from steps 1 and 3 into multiple 

processors 

3.2. Data Partitioning (contʼd) 
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3.3. Search Algorithms 
  Serial search algorithms: 

  Linear search 
  Binary search 

  Parallel search algorithms: 
  Processor activation or involvement 
  Local searching method 
  Key comparison 
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  Linear Search 
  Exhaustive search - search each record one by one until it is found or 

end of table is reached 

  Scanning cost: 1/2 x R / P x IO 
  Select cost: 1/2 x |R| x (tr + tw) 
  Comparison cost: 1/2 x |R| x tr 
  Result generation cost: σ x |R| x tw, where σ is the search query 

selection ratio 
  Disk writing cost: σ x R / P x IO  

3.3. Search Algorithms (contʼd) 
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  Binary Search 
  Must be pre-sorted 
  The complexity is O(log2(n)) 
  The cost components for binary search are similar to those of linear 

search, except that the component of 1/2 in linear search is now 
replaced with log2: 

3.3. Search Algorithms (contʼd) 
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  Parallel search algorithms: 
  Processor activation or involvement 
  Local searching method 
  Key comparison 
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  Processor activation or involvement 
  The number of processors to be used by the algorithm 
  If we know where the data to be sought are stored, then there is no point in 

activating all other processors in the searching process 
  Depends on the data partitioning method used 
  Also depends on what type of selection query is performed 
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  Local searching method 
  The searching method applied to the processor(s) involved in the searching 

process 
  Depends on the data ordering, regarding the type of the search (exact 

match of range) 
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  Key comparison 
  Compares the data from the table with the condition specified by the query 
  When a match is found: continue to find other matches, or terminate 
  Depends on whether the data in the table is unique or not 
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3.4. Summary 
  Search queries in SQL using the WHERE clause 

  Search predicates indicates the type of search operation 
  Exact-match, range (continuous or discrete), or multiattribute search 

  Data partitioning is a basic mechanism of parallel search 
  Single attribute-based, no attribute-based, or multiattribute-based 

partitioning 

  Parallel search algorithms have three main components 
  Processor involvement, local searching method, and key comparison 
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4.1. Sorting, Duplicate Removal and 
Aggregate 
  Sorting is expressed by the ORDER BY clause in SQL 
  Duplicate remove is identified by the keyword DISTINCT in SQL 

  Basic aggregate queries: 
  Scalar aggregates - produce a single value for a given table 
  Aggregate functions - produce a set of values 
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  GroupBy 
  Groups by specific attribute(s) and performs an aggregate function for 

each group 

4.1. Sorting, Duplicate Removal and Aggregate 
(contʼd) 
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4.2. Serial External Sorting 
  External sorting assumes that the data does not fit into main 

memory 
  Most common external sorting is sort-merge 
  Break the file up into  

 unsorted subfiles,  
 sort the subfiles, and  
 then merge the subfiles  
 into larger and larger 
 sorted subfiles until the  
 entire file is sorted  
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  Example 
  File size to be sorted = 108 pages, number of buffer = 5 pages 
  Number of subfiles = 108/5 = 22 subfiles (the last subfile is only 3 

pages long). Read, sort and write each subfile 
  Pass 0 (merging phase), we use B-1 buffers (4 buffers) for input and 1 

buffer for output 
  Pass 1: read 4 sorted subfiles and perform 4-way merging (apply a 

need k-way algorithm). Repeat the 4-way merging until all subfiles are 
processed. Result = 6 subfiles with 20 pages each (except the last one 
which has 8 pages) 

  Pass 2: Repeat 4-way merging of the 6 subfiles like pass 1 above. 
Result = 2 subfiles 

  Pass 3: Merge the last 2 subfiles 
  Summary: 108 pages and 5 buffer pages require 4 passes 

4.2. Serial External Sorting (contʼd) 
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  Example 
  Buffer size plays an important role in external sort 

4.2. Serial External Sorting (contʼd) 
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4.3. Parallel External Sort 
  Parallel Merge-All Sort 
  Parallel Binary-Merge Sort 
  Parallel Redistribution Binary-Merge Sort 
  Parallel Redistribution Merge-All Sort 
  Parallel Partitioned Sort 
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  Parallel Merge-All Sort 
  A traditional approach 
  Two phases: local sort and final merge 
  Load balanced in local sort 
  Problems with merging: 

Heavy load on one processor 
Network contention 

4.3. Parallel External Sort (contʼd) 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



  Parallel Binary-Merge Sort 
  Local sort similar to traditional method 
  Merging in pairs only 
  Merging work is now spread to 

 pipeline of processors, 
 but merging is still heavy 

4.3. Parallel External Sort (contʼd) 
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  Parallel Binary-Merge Sort 
  Binary merging vs. k-way merging 
  In k-way merging, the searching for the smallest value among k 

partitions is done at the same time 
  In binary merging, it is pairwise, but can be time consuming if the list is 

long 
  System requirements: k-way merging requires k files open 

simultaneously, but the pipeline process in binary merging requires 
extra overheads 

4.3. Parallel External Sort (contʼd) 
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  Parallel Redistribution 
Binary-Merge Sort 

  Parallelism at all levels in 
the pipeline hierarchy 

  Step 1: local sort 
  Step 2: redistribute the 

results of local sort 
  Step 3: merge using the 

same pool of processors 

  Benefit: merging becomes 
lighter than without 
redistribution 

  Problem: height of the tree 
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  Parallel Redistribution 
Merge-All Sort 

  Reduce the height of the 
tree, and still maintain 
parallelism 

  Like parallel merge-all sort, 
but with redistribution 

  The advantage is true 
parallelism in merging 

  Skew problem in the 
merging 
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  Parallel Partitioned Sort 

  Two stages: Partitioning 
stage and Independent local 
work 

  Partitioning (or range 
redistribution) may raise 
load skew 

  Local search is done after 
the partitioning, not before 

  No merging is necessary 
  Main problem: Skew 

produced by the partitioning 
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  Parallel Partitioned Sort 

  Bucket tuning: produce 
more buckets than the 
available processors 

  Bucket tuning does not work 
in parallel sort, because in 
parallel sort, the order of 
processor is important 

  Bucket tuning for load 
balancing will later be used 
in parallel join 
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4.4. Parallel GroupBy 
  Traditional methods (Merge-All and Hierarchical Merging) 
  Two-phase method 
  Redistribution method 
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  Traditional Methods 
  Step 1: local aggregate in each processor 
  Step 2: global aggregation 
  May use a Merge-All or Hierarchical method 
  Need to pay a special attention to some aggregate functions (AVG) 

when performing a local aggregate process 

4.4. Parallel GroupBy (contʼd) 
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  Two-Phase Method 
  Step 1: local aggregate in each processor. Each processor groups 

local records according to the groupby attribute 
  Step 2: global aggregation where all temp results from each processor 

are redistributed and then final aggregate is performed in each 
processor 

4.4. Parallel GroupBy (contʼd) 
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  Redistribution Method 
  Step 1 (Partitioning phase): redistribute raw records to all processors 
  Step 2 (Aggregation phase): each processor performs a local 

aggregation 

4.4. Parallel GroupBy (contʼd) 
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4.5. Cost Models for Parallel Sort 
  Additional cost notations 
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  Serial External Merge-Sort 
  I/O cost components are load and save costs 
  Load cost is the cost for loading data from disk to main memory 

  Save cost is the cost of writing data from the main memory to the disk, 
which is identical to load cost equation 

4.5. Cost Models for Parallel Sort (contʼd) 
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  Serial External Merge-Sort 
  CPU cost components are select, sorting, merging, and generation 

result costs 
  Select cost is the cost for obtaining a record from the data page 

  Sorting cost is the internal sorting cost which has O(N x log2 N) 

  Merging cost is applied to pass 1 onward 

  Generating result cost is determined by the number of records being 
generated or produced in each pass before they are written to disk 
multiplied 

4.5. Cost Models for Parallel Sort (contʼd) 
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  Parallel Merge-All Sort 
  Local merge sort costs are I/O costs, CPU costs, and Communication 

costs 
  I/O costs consist of load and save costs 

  CPU costs consist of select, sorting, merging and generating results 
costs 

  Communication costs for sending local sorted results to the host: 

4.5. Cost Models for Parallel Sort (contʼd) 
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  Parallel Merge-All Sort 
  Final merging costs are communication, I/O, and CPU costs 
  Communication cost is the receiving cost from local sorting operators 

  I/O cost is the load and save costs 

  CPU cost is the select, merging, and generating results costs 

4.5. Cost Models for Parallel Sort (contʼd) 
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  Parallel Binary-Merge Sort 
  The costs consist of local merge-sort costs, and pipeline merging costs 
  The local merge-sort costs are exactly the same as those of parallel 

merge-all sort, since the local sorting phase in both methods is the 
same 

  Hence, focus on pipeline merging costs 
  In pipeline merging, we need to determine the number of levels, which 

is log2(N) 
  In level 1, the number of processors used is up to half (N’=N/2) 
  The skew equation is then: 

4.5. Cost Models for Parallel Sort (contʼd) 
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  Parallel Binary-Merge Sort 
  Costs for level 1: 

    
 where R’ indicates the number of records being processed at a node in 
a level of pipeline merging 
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  Parallel Binary-Merge Sort 
  In the subsequent levels, the number of processors is further reduced 

by half. The new N’ value becomes N’ = N’ / 2. This also impact the 
skew equation 

  At the last level of pipeline merging, the host performs a final binary 
merging, where N’ = 1 

  The total pipeline binary merging costs are: 

  The values of R’I and |R’I| are not constant throughout the pipeline, but 
increase from level to level as the number of processors N’ is reduced 
by half when progressing from one level to another 
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  Parallel Redistribution Binary-Merge Sort 
  Local merge-sort costs, and pipeline merging costs 
  Local sort operation is similar to the previous two parallel sorts, but the 

temp results are being redistributed, which incurs additional overhead 
  The compute destination cost is:  

 where Ri may involve data skew 
  Pipeline merging costs are also similar to the those without 

redistribution 
  Differences: number of processors involved in each level, where all 

processors participate. Hence we use Ri and |Ri|, and not R’i and |R’i|; 
and the compute destination cost are applicable to all levels in the 
pipeline 
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  Parallel Redistribution Binary-Merge Sort 
  The pipeline merging costs are: 
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  Parallel Redistribution Merge-All Sort 
  Local merge-sort costs and merging costs 
  Local merge-sort costs are the same as those of parallel redistribution 

binary-merge sort with compute destination costs 
  Merging costs are similar to those of parallel merge-all sort, except 

one main difference. Here we use Ri and |Ri|, not R and |R| 
  The merging costs are then: 

4.5. Cost Models for Parallel Sort (contʼd) 
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  Parallel Partitioned Sort 
  Scanning/partitioning costs, and local merge-sort costs 
  Scanning and partitioning costs involve I/O, CPU, and communication 

costs 
  I/O costs consist of load cost: 

  CPU costs consist of select costs: 

  Communication costs consist of data transfer costs: 

4.5. Cost Models for Parallel Sort (contʼd) 
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  Parallel Partitioned Sort 
  The local merge-sort costs are similar to other local merge-sort costs, 

except communication costs are associated with data received from 
the first phase 

  Communication cost for receiving data: 

  I/O costs which are load and save costs: 

  CPU costs  are: 

4.5. Cost Models for Parallel Sort (contʼd) 
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4.6. Cost Models for Parallel GroupBy 
  Additional cost notations 
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  Parallel Two-Phase Method 
  Phase 1: Local aggregation 
  Scan cost:  
  Select cost:  
  Local aggregation cost: 
  Reading/Writing of overflow buckets: 

  Generating result records cost: 
  Determining the destination cost: 
  Data transfer cost:   

4.6. Cost Models for Parallel GroupBy (contʼd) 
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  Parallel Two-Phase Method 
  Phase 2: Consolidation (Merging) 
  The number of records arriving at a processor: 

  The first term is the number of selected records from the 1st phase 
  The second term is the table size of the selected records 

  Receiving records cost: 
  Computing final aggregation value cost: 
  Generating final result cost: 
  Disk cost for storing the final result: 

4.6. Cost Models for Parallel GroupBy (contʼd) 
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  Parallel Redistribution Method 
  Phase 1: Distribution/Partitioning 
  The scan and selection costs are the same as for those in the two-

phase method 
  Scan cost: 
  Select cost: 

  Apart from these two costs, the finding destination cost and the data 
transfer cost are added to this model 

  Finding destination cost: 
  Data transfer cost:  

  If the number of groups is less than the number of processors, then 
Ri = R / (Number of groups), instead of  
Ri = R / N 
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  Parallel Redistribution Method 
  Phase 2: Aggregation 
  Receiving records cost: 

 Only selected attributes are involved (π) 

  Computing aggregation cost:  

 It does not include π, because we take into account the number of 
records, not the record size 

  Reading/Writing of overflow buckets cost: 

 where s is the overall GroupBy selectivity ratio (σ= σp x σg) 
  Generating final result cost:  
  Disk cost:  

4.6. Cost Models for Parallel GroupBy (contʼd) 
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4.7. Summary 
  Sorting and duplicate removal are expressed in ORDER BY and 

DISTINCT in SQL 

  Parallel algorithms for database sorting 
  Parallel merge-all sort, parallel binary-merge sort, parallel redistribution 

binary-merge sort, parallel redistribution merge-all sort, and parallel 
partitioned sort 

  Cost models for each parallel sort algorithm 
  Buffer size 

  Parallel redistribution algorithm is prone to processing skew 
  If processing skew degree is high, then use parallel redistribution merge-all 

sort. 
  If both data skew and processing skew degrees are high or no skew, then 

use parallel partitioned sort 
D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 



4.7. Summary (contʼd) 
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  Parallel groupby algorithms 
  Traditional methods (merge-all and hierarchical methods) 
  Two-phase method 
  Redistribution method 

  Two-phase and Redistribution methods perform better than the 
traditional and hierarchical merging methods 

  Two-phase method works well when the number of groups is 
small, whereas the Redistribution method works well when the 
number of groups is large 
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5.1. Join Operations 
  Join operations to link two tables based on the nominated 

attributes - one from each table  
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5.2. Serial Join Algorithms 
  Three serial join algorithms: 

  Nested loop join algorithm 
  Sort-merge join algorithm 
  Hash-based join algorithm 
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  Nested-Loop Join Algorithm 
  For each record of table R, it goes through all records of table S 
  If there are N records in table R and M records in table S, the 

efficiency of a nested-loop join algorithm is O(NM) 

5.2. Serial Join Algorithms (contʼd) 
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Table R   Table S   Join Results   
Adele 8  Arts 8  Adele 8 Arts 
Bob 22  Business 15  Ed 11 Health 
Clement 16  CompSc 2  Joanna 2 CompSc 
Dave 23  Dance 12     
Ed 11  Engineering 7     
Fung 25  Finance 21     
Goel 3  Geology 10     
Harry 17  Health 11     
Irene 14  IT 18     
Joanna 2        
Kelly 6        
Lim 20        
Meng 1        
Noor 5        
Omar 19        
  

Figure 5.2. Sample data 



 

Algorithm: Sort-merge joi n  
Input: Tables R and S 
Output: Query Result Qr 
1.  Let Qr = {} 
2.  Sort records of table R based on the join attribute 
3.  Sort records of table S based on the join attribute 
4.  Let i = 1 and j = 1 
5.  Repeat 
6.    Read record R(i) 
7.    Read record S(j) 
8.    If join attribute R(i) < join attribute S(j) Then 
9.      i++ 
10.   Else 
11.     If join attribute R(i) > join attribute S(j) Then 
12.       j++ 
13.     Else 
14.       Put records R(i) and S(j) into the Qr 
15.       i++; j++ 
16.   If either R(i) or S(j) is EOF Then 
17.     Break 

Figure 5.5. Sort-Merge join algorithm 

  Sort-Merge Join Algorithm 
  Both tables must be pre-sorted based on the join attribute(s). If not, 

then both tables must be sorted first 
  Then merge the two sorted tables 

5.2. Serial Join Algorithms (contʼd) 
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5.2. Serial Join Algorithms (contʼd) 
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Table R   Table S   Join Results   
Meng 1  CompSc 2  Joanna 2 CompSc 
Joanna 2  Engineering 7  Adele 8 Arts 
Goel 3  Arts 8  Ed 11 Health 
Noor 5  Geology 10     
Kelly 6  Health 11     
Adele 8  Dance 12     
Ed 11  Business 15     
Irene 14  IT 18     
Clement 16  Finance 21     
Harry 17        
Omar 19        
Lim 20        
Bob 22        
Dave 23        
Fung 25        
  

Figure 5.4. Sorted tables 
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Table R   Table S   Join Results   
Meng 1  CompSc 2  Joanna 2 CompSc 
Joanna 2  Engineering 7  Adele 8 Arts 
Goel 3  Arts 8  Ed 11 Health 
Noor 5  Geology 10     
Kelly 6  Health 11     
Adele 8  Dance 12     
Ed 11  Business 15     
Irene 14  IT 18     
Clement 16  Finance 21     
Harry 17        
Omar 19        
Lim 20        
Bob 22        
Dave 23        
Fung 25        
  

Figure 5.4. Sorted tables 



  Hash-based Join Algorithm 
  The records of files R and S are both hashed to the same hash file, 

using the same hashing function on the join attributes A of R and B of 
S as hash keys 

  A single pass through the file with fewer records (say, R) hashes its 
records to the hash file buckets 

  A single pass through the other file (S) then hashes each of its records 
to the appropriate bucket, where the record is combined with all 
matching records from R 

5.2. Serial Join Algorithms (contʼd) 
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Algorithm: Hash-based joi n  
Input: Tables R and S 
Output: Query Result Qr 
1.  Let Qr = {} 
2.  Let H be a hash function 
3.  For each record in table S 
4.    Read a record from table S 
5.    Hash the record based on join attribute value using 
      hash function H into hash table 
6.  For each record in table R 
7.    Read a record from table R 
8.    Hash the record based on join attribute value using H 
9.    Probe into the hash table 
10.   If an index entry is found Then 
11.     Compare each record on this index entry with 
        the record of table S 
12.     If matched Then  
13.       Put the pair into Qr 

Figure 5.8. Hash-based join algorithm 
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Hash Ta b le 
Tabl e  S Index E n tr i es 
Arts 8 1 Geology/10 
Busi n ess 15 2 Comp S c/2 He a lt h /11 
Comp S c 2 hashed 3 Danc e /12 Finan c e/21 
Dance 12 into 4 
Enginee r ing 7  5 
Finan c e 21 6 Busi n es s /15 
Geology 10 7 Enginee r ing/7 
He a lth 11 8 Arts/8 
IT 18 9 IT/18 

10 
11 
12 

F igu r e 5. 6 . Has h i n g Ta b l e S 
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  Comparison 
  The complexity of join algorithms is normally dependent on the number 

of times that a disk scan needs to be performed 
  Nested-loop join algorithm = O(NM) 
  Sort-merge join algorithm = O(NlogN + MlogM + N + M) 
  Hash-based join algorithm = O(N + M) 

5.2. Serial Join Algorithms (contʼd) 
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5.3. Parallel Join Algorithms 
  Parallelism of join queries is achieved through data parallelism, 

whereby the same task is applied to different parts of the data 
  After data partitioning is completed, each processor will have its 

own data to work with using any serial join algorithm 
  Data partitioning for parallel join algorithms: 

  Divide and broadcast 
  Disjoint data partitioning 
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  Divide and Broadcast-based Parallel Join Algorithms 
  Two stages: data partitioning using the divide and broadcast method, 

and a local join 
  Divide and Broadcast method: Divide one table into multiple disjoin 

partitions, where each partition is allocated a processor, and broadcast 
the other table to all available processors 

  Dividing one table can simply use equal division 
  Broadcast means replicate the table to all processors 
  Hence, choose the smaller table to broadcast and the larger table to 

divide 

5.3. Parallel Join Algorithms (contʼd) 
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5.3. Parallel Join Algorithms (contʼd) 
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  Divide and Broadcast-based Parallel Join Algorithms 
  No load imbalance problem, but the broadcasting method is inefficient 
  The problem of workload imbalance will occur if the table is already 

partitioned using random-unequal partitioning 
  If shared-memory is used, then there is no replication of the broadcast 

table. Each processor will access the entire table S and a portion of 
table R. But if each processor does not have enough working space, 
then the local join might not be able to use a hash-based join 

5.3. Parallel Join Algorithms (contʼd) 
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  Disjoint Partitioning-based Parallel Join Algorithms 
  Two stages: data partitioning using a disjoint partitioning, and local join 
  Disjoint partitioning: range or hash partitioning 
  Local join: any serial local join algorithm 

5.3. Parallel Join Algorithms (contʼd) 
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  Example 1: Range partitioning 
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  Example 1: Range partitioning 
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  Example 2: Hash partitioning 

5.3. Parallel Join Algorithms (contʼd) 
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  Example 2: Hash partitioning 
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5.4. Cost Models for Parallel Join 
  Cost Models for Divide and Broadcast 

  Assume the tables have already been partitioned and placed in each 
processor 

  The cost components for the broadcasting process has three phases 
  Phase 1: data loading 
  Phase 2: data broadcasting 
  Phase 3: data storing 
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5.4. Cost Models for Parallel Join 
  Cost Models for Divide and Broadcast 

  Phase 1: data loading consists of the scan costs and the select costs 

  Scan cost for loading data from local disk in each processor is: 
(Si / P) x IO 

  Select cost for getting record out of data page is: 
|Si| x (tr + tw) 
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5.4. Cost Models for Parallel Join 
  Cost Models for Divide and Broadcast 

  Phase 2: The broadcast cost by each processor broadcasting its fragment 
to all other processors 

  Data transfer cost is: (Si / P) x (N – 1) x (mp + ml) 
  The (N-1) indicates that each processor must broadcast to all other 

processors. Note that broadcasting from one processor to the others has to 
be done one processor at a time, although all processors send the 
broadcast in parallel. The above cost equation would be the same as 
(S - Si) x (mp + ml), where (S - Si) is the size of other fragments. 

  Receiving records cost is: (S - Si) x (mp) 
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5.4. Cost Models for Parallel Join 
  Cost Models for Divide and Broadcast 

  Phase 3: Each processor after receiving all other fragments of table S, 
needs to be stored on local disk. 

  Disk cost for storing the table is: (S - Si) x IO 
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  Cost Models for Disjoint Partitioning 
  Three main cost components: loading costs, distribution costs, and storing 

costs 
  The loading costs include scan costs and select costs 

  Scan cost for loading tables R and S from local disk in each processor is: 
((Ri / P) + (Si / P)) x IO 

  Select cost for getting record out of data page is: (|Ri| + |Si|) x (tr + tw) 
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  Cost Models for Disjoint Partitioning 
  The distribution costs contains: the cost of determining the destination of 

each record, the actual sending and receiving costs 

  Finding destination cost is: (|Ri| + |Si|) x (td) 
  Data transfer cost is: ((Ri / P) + (Si / P)) x (mp + ml) 
  Receiving records cost is: ((Ri / P) + (Si / P)) x (mp) 
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5.4. Cost Models for Parallel Join (contʼd) 



  Cost Models for Disjoint Partitioning 
  Finally, the last phase is the data storing which involves storing all records 

received by each processor 

  Disk cost for storing the result of data distribution is: ((Ri / P) + (Si / P)) x IO 
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5.4. Cost Models for Parallel Join (contʼd) 



  Cost Models for Local Join 
  Assume to use hash-based join 
  Three main phases: data loading from each processor, the joining process 

(hashing and probing), and result storing in each processor. 

  Phase 1: The data loading consists of scan costs and select costs 
  Scan cost = ((Ri / P) + (Si / P)) x IO 
  Select cost = (|Ri| + |Si|) x (tr + tw) 

  (|Ri| + |Si|) and ((Ri / P) + (Si / P)) correspond to the values in the receiving 
and disk costs of the disjoint partitioning 
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  Cost Models for Local Join 
  Phase 2: The join process is the hashing and probing costs 
  Join costs involve reading, hashing, and probing: 

(|Ri| x (tr + th) + (|Si| x (tr + th + tj)) 

  If the memory size is smaller than the hash table size, we normally partition 
the hash table into multiple buckets whereby each bucket can perfectly fit 
into main memory. All but the first bucket is spooled to disk. 

  Reading/Writing of overflow buckets cost is the I/O cost associated with the 
limited ability of main memory to accommodate the entire hash table. 
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  Cost Models for Local Join 
  Phase 3: query results storing cost, consisting of generating result cost and 

disk cost. 

  Generating result records cost is: |Ri| x σj x |Si| x tw 

  Disk cost for storing the final result is: (πR x Ri x σj x πS x Si / P) x IO 
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5.5. Parallel Join Optimization 
  The aim of query processing in general is to speed up the query 

processing time 
  In terms of parallelism, the reduction in the query elapsed time is 

achieved by having each processor finish its execution as early as 
possible and as evenly as possible → load balancing issue 

  In the disjoint partitioning, after the data is distributed to the 
designated processors, the data has to be stored on disk. Then in 
the local join, the data has to be loaded from the disk again → 
managing main memory issue 
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  Optimizing Main Memory 
  Disk access is the most expensive operations, so need to reduce disk 

access as much as possible 
  If it is possible, only a single scan of data should be done. If not, then 

minimize the number of scan 
  If main memory size is unlimited, single disk scan is possible 
  However, main memory size is not unlimited, hence optimizing main 

memory is critical 
  Problem: In the distribution, when the data arrives at a processor, it is 

stored in disk. In the local join, the data needs to be reloaded from disk 
  This is inefficient. When the data arrives after being distributed from 

other processor, the data should be left in main memory, so that the 
data remain available in the local join process 

  The data left in the main memory can be as big as the allocated size 
for data in the main memory 

5.5. Parallel Join Optimization (contʼd) 
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  Optimizing Main Memory 
  Assuming that the size of main memory for data is M (in bytes), the 

disk cost for storing data distribution with a disjoint partitioning is: 

((Ri / P) + (Si / P) - M) x IO 

  And the local join scan cost is then reduced by M as well: 

((Ri / P) + (Si / P) - M) x IO 

  When the data from this main memory block is processed, it can be 
swapped with a new block. Therefore, the saving is really achieved by 
not having to load/scan the disk for one main memory block 

5.5. Parallel Join Optimization (contʼd) 
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  Load Balancing 
  Load imbalance is the main problem in parallel query processing. It is 

normally caused by data skew and then processing skew 
  No load imbalance in divide and broadcast-based parallel join. But this 

kind of parallel join is unattractive, due to the heavy broadcasting 
  In disjoint-based parallel join algorithms, processing skew is common 
  To solve this skew problem, create more fragments than the available 

processors, and then rearrange the placement of the fragments 

5.5. Parallel Join Optimization (contʼd) 
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5.6. Summary 
  Parallel join is one of the most important operations in parallel 

database systems 

  Parallel join algorithms have two stages 
  Data partitioning 
  Local join 

  Two types of data partitioning 
  Divide and broadcast 
  Disjoint partitioning 

  Three types of local join 
  Nested-loop join 
  Sort-merge join 
  Hash-based join 
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7.1. Parallel Indexing 
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  Index is an important element in databases 
  Parallel index structure is essentially data partitioning. 

However, index partitioning is not as straightforward as table 
partitioning, because index is not flat like table 

  B+ tree is the most common indexing structure 
  Each non-leaf node may consist up to k keys and k+1 pointers to the 

nodes on the next level 
  The data is pointed by the leaf nodes 
  All child nodes which are on the left-hand side of the parent node, 

have key values less than or equal to the key on their parent node. 
  The keys of child nodes on the right-hand side of the parent node are 

greater than the key of their parent nodes 



7.1. Parallel Indexing (contʼd) 
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Table (ID, Name): 

23 Adams  18 Kathy  39 Uma 
65 Bernard  21 Larry  43 Vera 
37 Chris  10 Mary  47 Wenny 
60 David  74 Norman  50 Xena 
46 Eric  78 Oprah  69 Yuliana 
92 Fred  15 Peter  75 Zorro 
48 Greg  16 Queenie  8 Agnes 
71 Harold  20 Ross  49 Bonnie 
56 Ian  24 Susan  33 Caroline 
59 Johanna  28 Tracey  38 Dennis 

Index (B+ Tree): 

o8 o10 o15 o28 o33 o37 o46 o47 o48

o38 o39 o43 o49 o50 o56 o65 o69 o71o16 o18 o23 o24

o20 o21 o59 o60 o74 o75

o78 o92

15 43 56

37

18

21 24 71 75

48 60

 

Figure 7.1. A Sample Table and Index 



7.1. Parallel Indexing (contʼd) 
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  Three parallel indexing structures 
  Nonreplicated index (NRI) 
  Partially replicated index (PRI) 
  Fully replicated index (FRI) 

  There are different variations to each parallel index, 
depending on two factors 

  Index partitioning attributes 
  Table partitioning attributes  Indexed Attribute 

= Table 
Partitioning 

Attribute 

No Index 
Partitioning 

Attribute 

Indexed Attribute ≠ 
Table Partitioning 

Attribute 

Non-Replicated 
Index 
NRI 

 
NRI-1 

 
NRI-2 

 
NRI-3 

Partially-
Replicated Index 

PRI 

 
PRI-1 

 
PRI-2 

 
PRI-3 

Fully-Replicated 
Index 
FRI 

 
FRI-1 

  
FRI-3 

Figure 7.2. Parallel Indexing Structures 



o8 o10 o15 o23 o24 o28

o49 o50 o56

o16 o18

o33 o37

o20 o21

46

15 18

37 39

21

48 56

o38 o39 o43 o46 o47 o48 o59 o60

o74 o75 o78 o92o65 o69 o71

71 75

Processor 1 (1-30):

Processor 2 (31-60):

Processor 3 (61-100):

 

Figure 7.3. NRI-1 structure (index partitioning attribute = table partitioning attribute) 

7.2. Parallel Indexing Structures 
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  Nonreplicated Indexing 
(NRI) Structures 

  The global index is partitioned 
into several disjoint and 
smaller indices 

  Each of these small indices is 
placed in a separate 
processing element 

  NRI-1: the index partitioning 
attribute is the same as the 
table partitioning attribute 
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  Nonreplicated Indexing (NRI) 
Structures 

  NRI-2: the local indices are built 
on whatever data already exists 
in each processing element 
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  Nonreplicated Indexing (NRI) 
Structures 

  NRI-3: the attribute used in index 
partitioning is different from that 
in data partitioning 

  Hence, the pointers from the leaf 
nodes to the actual record may 
cross to different processor, 
because the actual record is 
located at a different processor 



7.2. Parallel Indexing Structures (contʼd) 
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  Partially Replicated Index (PRI) 
  Like NRI, there are three variants (PRI-1, PRI-2, and PRI-3), 

depending on index partitioning attributes and table partitioning 
attributes 

  In PRI, the global index is maintained and is not partitioned. Each 
processing element has a different part of the global index, and the 
overall structure of the index is preserved 

  Ownership rule: Processor owning a leaf node also owns all nodes 
from the root to that leaf. Hence, the root node is replicated to all 
processors, and non-leaf nodes may be replicated to some processors 

  If a leaf node has several keys belonging to different processors, this 
leaf node is also replicated to the processors owning the keys 
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  PRI-1 
  Index partitioning attribute = table partitioning attribute 
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  PRI-1 implementation 
  Multiple node pointers model - impractical 

37

18 48 60

37

18

Processor 1 Processor 2

48 60

37

Processor 3

 

Figure 7.7. Multiple Node Pointers Model for PRI 
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  PRI-1 implementation 
  Single node pointer model 
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  PRI-2 
  No index partitioning is used 
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  PRI-2 
  No index partitioning is used 
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  PRI-3 
  Index partitioning attribute ≠ 

table partitioning attribute 
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  Fully Replicated Index (FRI) 
  The entire global index is replicated to all processors 
  There are only two variants: index partitioning attribute is the same as 

or is different from table partitioning attribute (FRI-1 and FRI-3) 
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  FRI-1 
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  FRI-3 



7.3. Index Maintenance 
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  Index maintenance covers insertion and deletion of index nodes 
  General steps: 

  Insert/delete a record to the table (carried out in processor p1) 
  Insert/delete an index node to/from the index tree (carried out in processor p2) 
  Update the data pointer 

  Two issues: 
  Whether p1 = p2. This is data pointer complexity 
  Whether maintaining an index (insert/delete) involves multiple processors. This is 

index tree restructuring issue 
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  Maintaining a Parallel Non-Replicated Index (NRI) 
  Involves a single processor, and hence it is really whether p1 is equal 

to p2 
  For NRI-1 and NRI-2 structures, p1 = p2, therefore it is done as per 

normal index maintenance on sequential processors 
  For NRI-3, because p1 ≠ p2, location of the record to be inserted/

deleted may be different from the index node insertion/deletion. So, 
after both the record and the index entry (key) have been inserted, the 
data pointer from the new index entry in p1 has to be established to the 
record in p2. Deletion is also similar.  

7.3. Index Maintenance (contʼd) 
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  Maintaining a Parallel Partially-Replicated Index (PRI) 
  Maintenance of PRI-1 and PRI-2 is similar to that of NRI-1 and NRI-2 

where p1= p2. PRI-3 is also similar to NRI-3; that is, p1≠ p2. 
  Main issue is: index restructuring 
  Example: insert node 21 

7.3. Index Maintenance (contʼd) 

Processors 1, 2

o18 o23 o37 o65 o71 o92o46 o48

37 48 60(a) Initial Tree

o56 o59 o60

Processor 2 Processor 2 Processor 3

Processors 1, 2, 3

Insert 21 (overflow)



(b2) Split (Non Leaf Node)

Processors 1, 2
o23 o37

37 48 60

(b1) Split (Leaf Node)

Processors 1, 2, 3

Insert 21 (overflow)

o18 o21

Processors 1, 2 Processor 2

o23 o37

48 60

Processors 1, 2, 3

o18 o21

Processors 1, 2

Processor 2

21

37

o46 o48

o46 o48
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  Maintaining a Parallel Partially-Replicated Index (PRI) 
  Example: insert node 21 

7.3. Index Maintenance (contʼd) 
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  Maintaining a Parallel Partially-Replicated Index (PRI) 
  Example: insert node 21 

7.3. Index Maintenance (contʼd) 

(c) Restructure (Processor Re-Allocation)

o23 o37

48 60

Processors 1, 2, 3

o18 o21

Processors 1, 2

Processor 2

21

37

Processors 1, 2

Processors 2, 3

Processor 1

o46 o48
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  Maintaining a Parallel Partially-Replicated Index (PRI) 
  Example: delete node 21 

7.3. Index Maintenance (contʼd) 
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  Maintaining a Parallel Partially-Replicated Index (PRI) 
  Example: delete node 21 

7.3. Index Maintenance (contʼd) 

Processors 1, 2

(b) Merge

48 60

Processors 1, 2, 3

37

37

Processors 1, 2

Processors 2, 3

Modify

o46 o48

Processor 2

o18 o23 o37

void

Processors 1, 2

o18 o23 o37 o46 o48

37 48 60
(c) Collapse

Processor 2

Processors 1, 2, 3
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  Maintaining a Parallel Fully-Replicated Index (FRI) 
  Index maintenance of the FRI structures is similar to that of the NRI 

structures, as all indexes are local to each processor. 

7.3. Index Maintenance (contʼd) 
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  Comparisons 
  The simplest forms are NRI-1 and NRI-2 structures, as p1= p2 and only 

single processors are involved in index maintenance (insert/delete). 

  The next level complexity is on data pointer maintenance, especially 
when index node location is different from based data location. The 
simpler one is the NRI-3 structure, where data pointer from an index 
entry to the record is 1-1. The more complex one is the FRI structures, 
where the data pointers are N-1 (from N index nodes to 1 record). 

  The highest complexity level is on index restructuring. This applicable 
to all the three PRI structures. 

7.3. Index Maintenance (contʼd) 



7.4. Index Storage Analysis 

D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 

  Storage cost models for Uniprocessors 
  Record storage: the length of each record, and the blocking factor 

Record length = sum of all fields + 1 byte deletion marker 

Blocking factor = floor (Block size / Record length) 

Total blocks for all records = ceiling (Number of records / Blocking factor) 
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  Storage cost models for Uniprocessors 
  Index storage: contains leaf nodes and non-leaf nodes 

 The relationship between number of keys in a leaf node and the size of 
each leaf node: 

(pleaf x (Key size + Data pointer)) + Node pointer ≤ Block size 
 where pleaf is the number of keys in a leaf node, Key size is the size of 
the indexed attribute (or key), Data pointer is the size of the data 
pointer, Node pointer is the size of the node pointer, and Block size is 
the size of the leaf node. 

Number of leaf nodes b1 = ceiling (Number of records / (Percentage x 
pleaf)) 

 where Percentage is the percentage that indicates by how much 
percentage a node is full 

7.4. Index Storage Analysis (contʼd) 
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  Storage cost models for Uniprocessors 
  Index storage: 

 Number of entries in each non-leaf node (indicated by p; as opposed 
to pleaf) is: 

(p x Node pointer) + ((p – 1 x Key size) ≤ Block size 

 The fanout (fo) of non-leaf node is influenced by the Percentage of an 
index tree to be full: 

fo = ceiling (Percentage x p) 

 Number of levels in an index tree is: 
x = ceiling (logfo (b1)) + 1) 

7.4. Index Storage Analysis (contʼd) 
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  Storage cost models for Uniprocessors 
  Index storage: 

 Total non-leaf nodes =  

   where bi = ceiling (bi-1 / fo) 

 Total index blocks = b1 + Total non-leaf nodes 

∑
=

x

i
ib

2
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  Storage cost models for Parallel Processors 
  NRI storage: The same calculation applied to uniprocessor indexing 

can be used by NRI. But the number of records is smaller than that of 
the uniprocessors 

  PRI storage: … next slides … 

  FRI storage: Record storage is the same for all indexing structures, as 
the records are uniformly partitioned to all processors. Index storage is 
very similar to NRI, except: 
  The number of records used in the calculation of the number of 
entries in leaf nodes is not divided by the number of processors. 
  The sizes of data pointers and node pointers must incorporate 
information on processors. This is necessary since both data and node 
pointers may go across to another processor. 

7.4. Index Storage Analysis (contʼd) 
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  Storage cost models for Parallel Processors 
  PRI storage: 

 Record storage cost models for all NRI, PRI, and FRI are all the same; 
that is, divide the number of records evenly among all processors, and 
calculate the total record blocks in each processor 
 Number of leaf nodes in each processor (we call this c1, instead of b1): 

c1 = ceiling (b1 / Number of processors) + 2 

Total non-leaf nodes = c1 +          +cx ∑
−

=

1

2

x

i
ic  
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7.5. Parallel Search using Index 
  Parallel one-index search 

  Queries on the search operation of one indexed attribute. This includes 
exact match or range queries 

  Parallel multi-index search 
  Queries having search predicates on multiple indexed attributes 
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  Parallel one-index search 
  Depending on the query type and parallel index 
  Parallel exact-match search: processor involvement, index tree traversal, 

and record loading 
  Parallel range search: continuous-range search, and discrete-range 

search 
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7.5. Parallel Search using Index (contʼd) 



  Parallel exact-match search (using one index) 
  Processor involvement: Ideally parallel processing may isolate into the 

processor(s) where the candidate records are located. Involving more 
processors in the process will certainly not do any good, especially if they 
do not produce any result. 

  Case 1 (selected processors): Applicable to all indexing structures, except 
for the NRI-2 structure.  

  Case 2 (all processors): Applicable to the NRI-2 indexing structure only, 
because using the NRI-2 indexing structure, there is no way to identify 
where the candidate records are located without searching in all processors 
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7.5. Parallel Search using Index (contʼd) 



  Parallel exact-match search (using one index) 
  Index tree traversal: Searching is done through index tree traversal  

starting from the root node and finishing either at a matched leaf node or no 
match is found. 

  Case 1 (isolated to local processors): Applicable to all indexing structures, 
but PRI-2. 

  Case 2 (crossing from one processor to another): Applicable to PRI-2 only, 
where searching that starts from a root node at any processor may end up 
on a leaf node at a different processor 
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7.5. Parallel Search using Index (contʼd) 



  Parallel exact-match search (using one index) 
  Record loading: Once a leaf node containing the desired data has been 

found, the record pointed by the leaf node is loaded from disk. 

  Case 1 (local record loading): Applicable to NRI/PRI/FRI-1 and NRI/PRI-2 
indexing structures, since the leaf nodes and the associated records in 
these indexing schemes are located at the same processors.  

  Case 2 (remote record loading): Applicable to NRI/PRI/FRI-3 indexing 
structures where the leaf nodes are not necessarily placed at the same 
processor where the records reside.  
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7.5. Parallel Search using Index (contʼd) 



  Parallel range search (using one index) 
  Continuous range: May need to involve multiple processors, need to 

identify the lower and upper bound of the range, and once lower/upper 
bound is identified, it becomes easy to trace all values within a given range, 
by traversing leaf nodes of the index tree 

  Discrete range: each discrete value in the search predicate is converted 
into multiple exact match predicates. Further processing follows the 
processing method for exact match queries. 
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7.5. Parallel Search using Index (contʼd) 



  Parallel multi-index search 
  There are two methods: 
  Intersection method: all indexed attributes in the search predicate are first 

searched independently. Each search predicate will form a list of index 
entry results found after traversing each index. After all indexes have been 
processed, the results from one index tree will be intersected with the 
results of other index trees to produce a final list 

  One-index method: Just use one of the indexes 
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7.5. Parallel Search using Index (contʼd) 



  Parallel multi-index search (using the Intersection method) 
  Since multiple indexes are used, there is a possibility that different indexing 

structures are used by each indexed attribute: 

  Case 1 (one index is based on NRI-1, PRI-1, or FRI-1): 
  Processor involvement: If the second indexing structure is NRI-2, PRI-2, 
or FRI-3, only those processors used for processing the first search 
attribute (which uses either NRI/PRI/FRI-1) will need to be activated. This is 
“early intersection” 
  Intersection operation: for NRI-3 and PRI-3, the leaf nodes found in the 
index traversal must be sent to the processors where the actual records 
reside, so that the intersection operation can be carried out there. Leaf 
node transfer is not required for NRI-2, PRI-2, or even FRI-3. 
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7.5. Parallel Search using Index (contʼd) 



  Parallel multi-index search (using the Intersection method) 
  Case 2 (one index is based on NRI-3, PRI-3, or FRI-3): 

  Applicable to the first index based on NRI/PRI/FRI-3 and the other 
indexes based on any other indexing structures, including NRI/PRI/FRI-3, 
but excluding NRI/PRI/FRI-1. The combination between NRI/PRI/FRI-3 and 
NRI/PRI/FRI-1 has already been covered by case 1 

  Processor involvement: No “early intersection” 

  Intersection operation: particularly for NRI/PRI-3, it will be carried out as 
for case 1; that is, leaf nodes found in the searching process will need to be 
sent to where the actual records are stored and the intersection will be 
locally performed there. 
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7.5. Parallel Search using Index (contʼd) 



  Parallel multi-index search (using the Intersection method) 
  Case 3 (one index is based on NRI-2 or PRI-2): 

  Processor involvement: No “early intersection” since none of NRI/PRI/
FRI-1 is used 
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7.5. Parallel Search using Index (contʼd) 



  Parallel multi-index search (using the One-Index method) 
  Two main factors: 

  The selectivity factor of each search predicate: it will be ideal to choose 
a search predicate which has the lowest selectivity ratio, with a 
consequence that most records have already been filtered out by this 
search predicate and hence less work will be done by the rest of the search 
predicates 

  The indexing structure which is used by each search predicate: It will be 
ideal to use an indexing structure which uses selected processors, local 
index traversals, and local record loading 
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7.5. Parallel Search using Index (contʼd) 



7.6. Parallel Join using Index 
  Parallel one-index join 

  Involves one non-indexed table (say table R) and one indexed table (say 
table S) 

  Parallel two-index join 
  Both tables are indexed by the join attribute 
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  Parallel One-Index Join 
  Data partitioning and local join steps 
  In the data partitioning step, depending on which parallel indexing scheme 

is used by table S, data partitioning to table R may or may not be 
conducted.  

  Case 1 (NRI-1 and NRI-3): 
  Records of table R are re-partitioned according to the same range 
partitioning function used by table S. Both the records and index tree of 
table S are not at all mutated. At the end of the data partitioning step, each 
processor will have records R and index tree S having the same range of 
values of the join attribute. 

  Case 2 (NRI-2): 
  Broadcast the non-indexed table R has to be broadcast to all processors 
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7.6. Parallel Join using Index (contʼd) 



  Parallel One-Index Join 
  Case 3 (PRI): 

  If table S is indexed using any of the PRI structures, the non-indexed table 
R do not need to be re-distributed, since by using a PRI structure, the 
global index is maintained and more importantly the root index node is 
replicated to all processors so that tracing to any leaf node can be done 
from any root node at any processor. 

  Case 4 (FRI): 
  If table S is indexed using any of the FRI structures (i.e. FRI-1 or FRI-3), 
like Case 3, the non-indexed table R is not redistributed either. 
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7.6. Parallel Join using Index (contʼd) 



  Parallel One-Index Join 
  In the local join step, each processor performs its joining operation 

independently of the others. Using a nested block index join method as 
described earlier, for each record R, search for a matching index entry of 
table S. If a match is found, depending on the location of the record (i.e. 
whether it is located at the same place as the leaf node of the index), record 
loading is performed. 
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7.6. Parallel Join using Index (contʼd) 



  Parallel Two-Index Join 
  Each processor performs an independent merging of the leaf nodes, and 

the final query result is the union of all temporary results gathered by each 
processor.  

  Case 1 (all index structures, except NRI-2 and PRI-2): 
  Whichever parallel indexing structure is used, they must adopt the same 
index partitioning function.The main processing is a merging operation of 
the leaf nodes of the two index trees in each processor.  

  Case 2 (NRI-2 or PRI-2): 
  Unfortunately, parallel two-index join query processing cannot make use 
of these indexes. Therefore, NRI-2 and PRI-2 are useless for parallelizing 
two-index join query processing. 
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7.6. Parallel Join using Index (contʼd) 



7.7. Comparative Analysis 
  Parallel search index 

  Parallel one-index search 
  Parallel multi-index search (Intersection method, One-index method) 

  Parallel join index 
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  Parallel One-Index Search 
  Processor involvement, index traversal, and record loading 
  Shaded cells show more expensive operations in comparison with others 

within the same operation  
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7.7. Comparative Analysis (contʼd) 

NRI Schemes PRI Schemes FRI Schemes  
NRI-1 NRI-2 NRI-3 PRI-1 PRI-2 PRI-3 FRI-1 FRI-3 

Processor 
Involvement 

Selected 
processors 

All 
processors 

Selected 
processors 

Selected 
processors 

Selected 
processors 

Selected 
processors 

Selected 
processors 

Selected 
processors 

Index 
Traversal 

Local 
search 

Local 
search 

Local 
search 

Local 
search 

Remote 
search 

Local 
search 

Local 
search 

Local 
search 

Record 
Loading 

Local 
record load 

Local 
record load 

Remote 
record load 

Local 
record load 

Local 
record load 

Remote 
record load 

Local 
record load 

Remote 
record load 

Figure 7.24. A Comparative Table for Parallel One-Index Selection Query Processing 



  Parallel Multi-Index Search 
(with Intersection method) 

  Individual index searching 
  Intersection operation 

  Case 1: one index based on NRI-1, 
PRI-1, or FRI-1 

  Case 2: one index based on NRI-3, 
PRI-3, or FRI-3 

  Case 3: one index based on NRI-2 
or PRI-2 
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7.7. Comparative Analysis (contʼd) 



  Parallel Multi-Index Search (with One-Index method) 
  The main aim is to minimize I/O, The first search predicate, which uses an 

index, should have the smallest selectivity ratio. 
  The smallest selectivity ratio is given by an exact match search with unique 

records, and the most efficient indexing structure is NRI/PRI/FRI-1. This is 
the most preferable indexing structure. 

  The next preferable option is exact match search of non-unique records or 
continuous range search predicates depending on the selectivity ratio using 
NRI-2/3 or PRI-2/3 or FRI-3. 
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7.7. Comparative Analysis (contʼd) 

NRI Schemes PRI Schemes FRI Schemes  
NRI-1 NRI-2 NRI-3 PRI-1 PRI-2 PRI-3 FRI-1 FRI-3 

Exact Match 
Search 
Queries 

Isolated 
record 
loading 

Record 
loading 
possibly 
spread (if 

non-unique) 

Record 
loading 
possibly 
spread (if 

non-unique) 

Isolated 
record 
loading 

Record 
loading 
possibly 
spread (if 

non-unique) 

Record 
loading 
possibly 
spread (if 

non-unique) 

Isolated 
record 
loading 

Record 
loading 
possibly 
spread (if 

non-unique) 
Continuous 

Range 
Search 
Queries 

Record 
loading 
possibly 

spread, but 
not random 

Record 
loading 
possibly 
spread 

randomly 

Record 
loading 
possibly 
spread 

randomly 

Record 
loading 
possibly 

spread, but 
not random 

Record 
loading 
possibly 
spread 

randomly 

Record 
loading 
possibly 
spread 

randomly 

Record 
loading 
possibly 

spread, but 
not random 

Record 
loading 
possibly 
spread 

randomly 
Figure 7.26. A Comparative Table for Parallel Multi-Index Selection Query 
Processing using a One-Index Access Method 



  Parallel Index Join 
  Parallel one-index join: Data partitioning, local join and indexed table 

searching 
  Paralel two-index join: Merging, searching start/end values, and data 

loading 
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7.7. Comparative Analysis (contʼd) 

NRI Schemes PRI Schemes FRI Schemes  
NRI-1 NRI-2 NRI-3 PRI-1 PRI-2 PRI-3 FRI-1 FRI-3 

Data partitioning Partition Broadcast Partition No 
Partition 

No 
Partition 

No 
Partition 

No 
Partition 

No 
Partition 

Indexed table 
searching 

Local 
search 

Local 
search 

Local 
search 

Remote 
search 

Remote 
search 

Remote 
search 

Local 
search 

Local 
search 

Parallel 
One-Index 

Join Local 
join 

Indexed table 
record loading 

Local data 
load 

Local data 
load 

Remote 
data load 

Remote 
data load 

Remote 
data load 

Remote 
data load 

Remote 
data load 

Remote 
data load 

Searching start 
and end values 

Not 
necessary 

Not 
necessary 

Not 
necessary 

Not 
necessary 

Searching 
needed 

Searching 
needed 

Parallel 
Two-Index 

Join 

Merging 

Data loading Local data 
load 

 
N/A 

Remote 
data load 

Local data 
load 

 
N/A 

Remote 
data load 

Local data 
load 

Remote 
data load 

Figure 7.27. A Comparative Table for Parallel Index-Join Query Processing 



7.8. Summary 
  Parallel indexing structures 

  NRI, PRI, and FRI 

  Parallel indexing maintenance 
  Insertion and deletion operations 

  Parallel indexing storage 
  Storage for tables and for indices 

  Parallel index-search query processing 
  One-index search and multiple-index search 

  Parallel index-join query processing 
  Parallel one-index join and two-index join 
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16.1. Data-Intensive Applications 
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  All of the three: databases, data warehouses, and data 
mining, deal with data.  



D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 

  Databases are commonly deployed in almost every 
organization. In a simple form, databases are referred to as 
data repositories. Database processing are queries, and 
transactions. The data contained in a database is normally 
operational data. 

16.1. Data-Intensive Applications (contʼd) 
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  Data warehouse provides information from a historical 
perspective, whereas an operational database keeps data of 
current value. The process involves: data extraction, filtering, 
transforming, integrating from various sources, classifying 
the data, aggregating and summarizing the data. The result 
is a data warehouse where the data is integrated, time-
variant, non-volatile, and commonly subject-oriented. 

16.1. Data-Intensive Applications (contʼd) 
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  Data mining analyzes a large amount of data stored in 
databases to discover interesting knowledge in the form of 
patterns, association, changes, anomalies, significant 
structures, etc. Data mining is also known as knowledge 
discovery, or more precisely, knowledge discovery of data.  

16.1. Data-Intensive Applications (contʼd) 



16.2. Data Mining: A Brief Overview 
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  Data mining is a process for discovering useful, interesting, 
and sometimes surprising knowledge from a large collection 
of data.  

  Data Mining Tasks 
  Descriptive data mining: describes the data set in a concise manner 

and presents interesting general properties of the data; summarizes 
the data in terms of its properties and correlation with others. 

  Predictive data mining: Predictive data mining builds a prediction 
model whereby it makes inferences from the available set of data, and 
attempts to predict the behaviour of new data sets.  
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  Data Mining Techniques 
  Class description or characterization summarizes a set of data in a 

concise way that distinguishes this class from others.  
  Association rules discover association relationships or correlation 

among a set of items.  
  Classification analyzes a set of training data and constructs a model 

for each class based on the features in the data.  
  Prediction predicts the possible values of some missing data or the 

value distribution of certain attributes in a set of objects. 
  Clustering is a process to divide the data into clusters, whereby a 

cluster contains a collection of data that is similar to one another.   
  Time-series analysis analyzes a large set of time series data to find 

certain regularities and interesting characteristics.  

16.2. Data Mining: A Brief Overview (contʼd) 
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  Querying vs. Mining 
  Although it has been stated that the purpose of mining (or data mining) 

is to discover knowledge, it should be differentiated from querying (or 
database querying), which simply retrieves data. 

  In some cases, this is easier said than done. Consequently, 
highlighting the differences is critical in studying both database 
querying and data mining. The differences can generally be 
categorized into: unsupervised and supervised learning. 

16.2. Data Mining: A Brief Overview (contʼd) 
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  Unsupervised Learning 
  Unsupervised learning is whereby the learning process is not guided, 

or even dictated, by the expected results. To put it in another way, 
unsupervised learning does not require a hypothesis. Exploring the 
entire possible space in the jungle of data might be overstating, but 
can be analogous that way. 

  Association rule mining vs. Database querying: Given a database 
D, association rule mining produces an association rule Ar(D) = X→Y, 
where X,Y ∈ D. A query Q(D, X) = Y produces records Y matching the 
predicate specified by X. 
  The pattern X→Y may be based on certain criteria, such as: majority, 
minority, absence, exception 

16.2. Data Mining: A Brief Overview (contʼd) 



D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 

  Unsupervised Learning 
  Sequential patterns vs. Database querying: Given a database D, a 

sequential pattern Sp(D) = O:X→Y, where O indicates the owner of a 
transaction and X,Y ∈ D. A query Q(D, X, Y) = O, or Q(D, aggr) = O, 
where aggr indicates some aggregate functions. 

  Clustering vs. Database querying: Given database D, a clustering 
                       , where it produces n clusters each of which consists of 
a number of items X. A query Q(D, X1) = {X2, X3, X4, …}, where it 
produces a list of items {X2, X3, X4, …} having the same cluster as the 
given item X1. 

16.2. Data Mining: A Brief Overview (contʼd) 
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  Supervised Learning 
  Supervised learning is naturally the opposite of unsupervised learning, 

since supervised learning starts with a direction pointing to the target. 

  Decision tree classification vs. Database querying: Given database 
D, a decision tree Dt(D, C) = P, where C is the given category and P is 
the result properties. A query Q(D, P) = R, is where the property is 
known in order to retrieve records R. 

16.2. Data Mining: A Brief Overview (contʼd) 
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  Parallelism in Data Mining 
  Large volume of data 
  High dimension (large number of attributes) 
  High degree of complexity (not previously found or applicable to 

databases or even data warehousing) 
  Even a simple data mining technique requires a number of iterations of 

the process, and each of the iterations refines the results until the 
ultimate results are generated 

  Parallelism in data mining: data parallelism and result parallelism 

16.2. Data Mining: A Brief Overview (contʼd) 



D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 

  Data Parallelism 
  Data parallelism is created because 

the data is partitioned into a number 
of processors and each processor 
focuses on its partition of the data set. 

  After each processor completes its 
local processing and produces the 
local results, the final results are 
formed basically by combining all 
local results.  

  Since data mining processes normally 
exist in several iterations, data 
parallelism raises some complexities, 
not commonly found in database 
query processing. 
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  Result Parallelism 
  Result parallelism focuses on 

how the target results can be 
parallelized during the processing 
stage without having produced 
any results or temporary results.  

  Result parallelism works by 
partitioning the target results, and 
each processor focuses on its 
target result partition. 

  Each processor will do whatever 
it takes to produce the result 
within the given range, and will 
take any input data necessary to 
produce the desired result space.  



16.3. Parallel Association Rules 
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  To discover rules based on the correlation between different 
attributes/items found in the dataset 

  Two phases: (i) phase one: discover frequent itemsets from 
a given dataset, and (ii) phase two: generate rules from 
these frequent itemsets.  

  The first phase is widely recognized as being the most 
critical, computationally intensive task. Since the frequent 
itemset generation phase is computationally expensive, most 
work on association rules, including parallel association 
rules, have been focusing on this phase only. Improving the 
performance of this phase is critical to the overall 
performance. 
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  Some measurements 
  Support and minimum support 
  Confidence and minimum confidence 
  Frequent Itemset: An itemset in a dataset is considered as frequent if 

its support is equal to, or greater than, the minimum support threshold 
specified by the user. 

  Candidate Itemset: Given a database D and a minimum support 
threshold minsup and an algorithm that computes F(D, minsup), an 
itemset I is called candidate for the algorithm to evaluate whether or 
not itemset I is frequent. 

  Association rules: At a given user-specified minimum confidence 
threshold minconf, find all association rules R from a set of frequent 
itemset F such that each of the rules has confidence equal to, or 
greater than minconf. 

16.3. Parallel Association Rules (contʼd) 
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  Example 

16.3. Parallel Association Rules (contʼd) 
Transaction ID Items Purchased 
100 bread, cereal, milk 
200 bread, cheese, coffee, milk 
300 cereal, cheese, coffee, milk 
400 cheese, coffee, milk 
500 bread, sugar, tea 

Figure 16.5. Example Dataset 

Frequent Itemset Support 
bread 60% 
cereal 40% 
cheese 60% 
coffee 60% 
milk 80% 
bread, milk 40% 
cereal, milk 40% 
cheese, coffee 60% 
cheese, milk 60% 
coffee, milk 60% 
cheese, coffee, milk 60% 

Figure 16.6. Frequent Itemset 

Association Rules Confidence 
breadmilk 67% 
cerealmilk 100% 
cheesecoffee 100% 
cheesemilk 100% 
coffeemilk 100% 
coffeecheese 100% 
milkcheese 75% 
milkcoffee 75% 
cheese, coffeemilk 100% 
cheese, milkcoffee 100% 
coffee, milkcheese 100% 
cheesecoffee, milk 100% 
coffeecheese, milk 100% 
milkcheese, coffee 75% 

Figure 16.7. Association Rules 



D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 

  Frequent itemset process 
  Iteration 1: scan the dataset and finds 

all frequent 1-itemset 
  Iteration 2: join each frequent 1-

itemset and generates candidate 2-
itemset. Then it scans the dataset 
again, enumerates the exact support 
of each of these candidate itemsets 
and prunes all infrequent candidate 
2-itemsets. 

  Iteration 3: joins each of the frequent 
2-itemset and generates the following 
potential candidate 3-itemset. Prunes 
those candidate 3-itemset that do not 
have a subset itemset in F2. Scans 
the dataset and finds the exact 
support of that candidate itemset. It 
finds that this candidate 3-itemset is 
frequent. In the joining phase, Cannot 
produce any candidate itemset for 
the next iteration. 
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  Rules generation 
  Using the frequent itemset {cheese coffee milk}, the following three 

rules hold, since the confidence is 100% 
cheese, coffee → milk 
cheese, milk → coffee 
coffee, milk → cheese  

  Then we use the apriori_gen() function to generate all candidate 2-
itemsets, resulting {cheese milk} and {coffee milk}. After confidence 
calculation, the following two rules hold: 

coffee → cheese, milk  (confidence=100%) 
cheese → coffee, milk  (confidence=75%) 

  Therefore, from one frequent itemset {cheese coffee milk} alone, five 
association rules shown above have been generated (see Figure 16.7) 

16.3. Parallel Association Rules (contʼd) 
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  Parallel Association Rules 
  Data parallelism for association rule mining is often referred to as 

count distribution 
  Result parallelism is widely known as data distribution.  

16.3. Parallel Association Rules (contʼd) 
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  Data Parallelism (or Count 
Distribution) 

  Each processor will have a disjoint 
data partition to work with. Each 
processor, however, will have a 
complete candidate itemset, although 
with partial support or support count. 

  At the end of each iteration, since the 
support or support count of each 
candidate itemset in each processor 
is incomplete, each processor will 
need to ‘redistribute’ the count to all 
processors. Hence, the term ‘count 
distribution’ is used.  

  This global result reassembling stage 
is basically to redistribute the support 
count which often means global 
reduction to get global counts. The 
process in each processor is then 
repeated until the complete frequent 
itemset is ultimately generated. 



D. Taniar, C.H.C. Leung, W. Rahayu, S. Goel: High-Performance Parallel Database Processing and Grid Databases, John Wiley & Sons, 2008 

  Result Parallelism (or Data 
Distribution) 

  Data distribution parallelism is based 
on result parallelism whereby 
parallelism is created due to the 
partition of the result, instead of the 
data. However, the term ‘data 
distribution’ might be confused with 
data parallelism (count distribution).  

  Initially, the dataset has been 
partitioned. However, each processor 
needs to have not only its local 
partition, but all other partitions from 
other processors. 

  At the end of each iteration, where 
each processor will produce its own 
local frequent itemset, each 
processor will also need to send to all 
other processors its frequent itemset, 
so that all other processors can use 
this to generate its own candidate 
itemset for the next iteration.   



16.4. Parallel Sequential Patterns 
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  Sequential patterns, also known as sequential rules, are 
very similar to association rules. They form a causal 
relationship between two itemsets, in a form of X→Y, where 
because X occurs, it causes Y to occur with a high 
probability. 

  Association rules are intra-transaction patterns or 
sequences, where the rule X→Y indicates that both items X 
and Y must exist in the same transaction.  

  Sequential pattern are inter-transaction patterns or 
sequences. The same rule above indicates that since item X 
exists, this will lead to the existence of item Y in the near 
future transaction. 
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  Example 

16.4. Parallel Sequential Patterns (contʼd) 
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  Concepts 
  Given a set of transactions D each of which consists of the following 

fields: customer ID, transaction time, and the items purchased in the 
transaction, mining sequential patterns is used to find the inter-
transaction patterns/sequences that satisfy minimum support minsup, 
minimum gap mingap, maximum gap maxgap, and window size wsize 
specified by the user. 

16.4. Parallel Sequential Patterns (contʼd) 
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  Concepts 
  A sequence s is an ordered list of itemsets i.  
  Containment: <(5 6) (7)> is contained in <(4 5) (4 5 6 7) (7 9 10)>, because 

(5 6) ⊆ (4 5 6 7) and (7) ⊆ (7 9 10). Whereas <(3 5)> is not contained in <(3) 
(5)>. 

  Four important parameters in mining sequential patterns: support, 
window size, minimum gap, and maximum gap. 

16.4. Parallel Sequential Patterns (contʼd) 
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  Example 

16.4. Parallel Sequential Patterns (contʼd) 
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  Sequential Patterns Process 
  Phase 1: k=1 
  Phase 2: k>1 

16.4. Parallel Sequential Patterns (contʼd) 
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  Parallel Processing 
  Data parallelism (or count distribution) 
  Result parallelism (or data distribution) 

16.4. Parallel Sequential Patterns (contʼd) 
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  Parallel Processing 
  Data parallelism (or count distribution) 
  Result parallelism (or data distribution) 

16.4. Parallel Sequential Patterns (contʼd) 



16.5. Summary 
  Parallelism in data mining 

  Data parallelism: Data parallelism in association rules and sequential 
patterns is often known as count distribution where the counts of candidate 
itemsets in each iteration are shared and distributed to all processors. 
Hence, there is a synchronization phase.  

  Result parallelism: Result parallelism, on the other hand, is parallelization 
of the results (i.e. frequent itemset and sequence itemset). This parallelism 
model is often known as data distribution, where the dataset and frequent 
itemsets are distributed and moved from one processor to another at the 
end of each iteration. 

  Parallel association rules and parallel sequential patterns using 
data and result parallelism 
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