

# Issues and Challenges in Model Versioning









### Dipl.-Ing. Kerstin Altmanninger

Johannes Kepler University Linz Department of Telecooperation (TK) Altenberger Straße 69, 4040 Linz, Austria

Phone: +43 (0)70/2468-9262 Fax: +43 (0)70/2468-9829 Email: kerstin.altmanninger@jku.at WWW: <u>http://www.tk.jku.at</u>

#### **Projects:**

- ModelCVS: A Semantic Infrastructure for Model-based Tool Integration
- AMOR Adaptable Model Versioning

#### PhD thesis:

Models in Conflict – A Semantically Enhanced Version Control System for Model Artifacts





### Outline

- Introduction to Model-driven Engineering
- Features of Version Control Systems
  - Top-level Features
  - 3-way Merge Features
- Challenges in Model Versioning
  - Existing Systems
  - Requirements
  - Issues
- Discussion
- AMOR Project
- Literature



# Introduction to Model-driven Engineering

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009 4/77 Dipl.-Ing. Kerstin Altmanninger



### **Problem #1: Problem Area vs. Solution Area**



### Problem #2: Modeling as a Necessary Evil

- »When it comes down to it, the real point of software development is cutting code«
- »Diagrams are, after all, just pretty pictures«
- »No user is going to thank you for pretty pictures; what a user wants is software that executes«
- [M. Fowler, "UML Distilled", 1st edition, Addison Wesley, 1997]



Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



### **Solution: Model-driven Engineering (MDE)**



Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009

### **Effect #1: Evolution of Modeling**



- Models as sketch
  - Communication of ideas/alternatives
  - Goal: Modeling
- Models as templates
  - Documentation of design decisions
  - Goal: Implementation guide
- Models as programs
  - Generation of applications automatically
  - Goal: Models are source code and vice versa

### **Effect #2: Model as the Central Artifact**



### **Effect #3: Models are more than just Pictures**



Foundation: Formal language definition

Modeling languages: MOF, Ecore, ...



Automatic model processing (e.g., PIM -> PSM, refactoring)

Model transformation languages: QVT, ATL, ...



- Code generation languages: JET, Xpand, ...
- Persistent model storage and model exchange
  - Model serialization/deserialization: XMI





# Features of Version Control Systems

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009 11/77 Dipl.-Ing. Kerstin Altmanninger



# **Overview of Version Control Systems**

- Part of Software Configuration Management
- Basic components:
  - Repository
  - (Software) Artifacts => versions (revisions vs. variants)
- Purpose:
  - Historical archiving and management of changes in (software) artifacts
    - retrieving old revisions
    - keeping track of changes
  - Supports collaboration





### **Top-level Features**



### **Pessimistic Versioning**

#### -> Collaboration

- Merge
- Repository Architecture
- Branching



- Lock-modify-unlock paradigm
- Disadvantages:
  - Prohibits parallel working
  - Administration overhead
  - False sense of security



# **Optimistic Versioning**

#### -> Collaboration

- Merge
- Repository Architecture
- Branching



- Copy-modify-merge paradigm
- Advantage:
  - Saves time
- Disadvantage:
  - Result depends on quality of the merge







#### Features of Version Control Systems

# **Centralized vs. Distributed**



- Merge
- Repository Architecture
- Branching

### Centralized

- Users access a master repository via a client
- Edited working copies must be committed before they can be propagated to other VCS users
- Version history is only available in the master repository

### Distributed

- Each user has an own repository
- Repositories can be synchronized optionally with others
- Version history is distributed on the different repositories

## **Branching Variants**

- Collaboration
- Merge
- Repository Architecture
- -> Branching

Implicit/Explicit

### Used due to different intentions

- Version Management
  - software product releases
- Variant Management
  - software product variants
  - common core
- Decentralized Version Control Systems
- Resolution Support
  - storage of the intermediate versions before a merge
  - to retrieve information about differences, conflicts and resolution patterns



### **3-way Merge Features**



Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



### **Comparison Phase**





### **State vs. Change**



- Representation
- Granularity
- Differences

### State-based





- Input:
  - Two versions of an artifact
- Advantage:
  - Independent of a development environment / editor
- Disadvantage:
  - Matching techniques needed
- Conflict detection is computed on the resulting difference sets

### Change-based





- Input:
  - Two versions of an artifact
  - Change protocol (log file)
- Advantage:
  - Composite operations available
- Disadvantage:
  - Bounded to an development environment / editor
- Conflict detection is computed on the logged changes



### **UUIDs vs. Heuristics**

- Matching approaches particular important for state-based versioning
- Needed to identify the artifact's elements occurring in both versions

#### Universally Unique Identifiers (UUIDs)

- All elements in an artifact need to provide an UUID
- Newly created elements must be assigned with an UUID
- UUIDs must not be modified until the deletion of the element
- Two elements occurring in different versions with the same UUID are considered as identical
- Advantages:
  - easiest approach to realize a matching
  - elements can still be matched, although they have been changed fundamentally
  - unique matching
- Disadvantage:
  - Assignment of UUIDs needed



Basis
 Match

Representation
Granularity
Differences

### **UUIDs vs. Heuristics**



#### Heuristics

- May be based on structural similarities of two artifact versions
- Often use metrics from information theory
- Advantage:
  - flexible
- Disadvantage:
  - matching might not be unique
  - performance may be an issue
- UUIDs and Heuristics can be combined!



#### Features of Version Control Systems

### Line vs. Tree vs. Graph



#### Line-based

• Any kind of artifacts

### **Tree-based**

- HTML, XML file
- Latex document

### **Graph-based**

- Model artifacts
- Program source code











- Also known as version granularity, delta granularity or unit of conflicts
- Can be applied on any granularity level



#### Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



Resulting set of difference can be classified according to two orthogonal dimensions

- Dependency on an underlying language
- Divisibility of a change operation





### **Conflict Detection Phase**



#### Textual



#### Graphical





### **Conflict Detection Phase**





#### Features of Version Control Systems

### **Textual Conflict**



- Semantics
- Equivalence
- 1 <?xml version="1.0" encoding="UTF-8"?>
  2 <uml:Package xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:uml="http://
  www.eclipse.org/uml2/3.0.0/UML" xmi:id="\_tLh4kJ7TEd67t-3wTeUA-A" name="Version0">
  3 <packagedElement xmi:type="uml:Class" xmi:id="\_v0dpsJ7TEd67t-3wTeUA-A" name="Person">
  4 <ownedAttribute xmi:id="\_zvIvgJ7TEd67t-3wTeUA-A" name="birthday" aggregation="composite">
  5 <type xmi:type="uml:PrimitiveType" href="pathmap://UML\_METAMODELS/UML.metamodel.uml#String"/>
  6 </ownedAttribute>
  7 </packagedElement>
- 8 </uml:Package>







- »Detected by a structural comparison of artifacts, which are represented either in a tree or graph reflecting the syntax of the artifact's language.«
- »Syntactic conflicts are resulting from modifications, which produce a violation of the language's syntax when merged.«

|            | Customer | Account |          |  |
|------------|----------|---------|----------|--|
| Customer * | Account  |         | Customer |  |



# **Semantic Conflicts**



- Some conflicts cannot be detected by a structural comparison due to
  - Semantic meaning of linguistic expressions
  - Syntactic different parts have been edited which may
    - violate language constraints or
    - the execution behavior

if merged

- Formal semantics are needed to detect such kinds of conflicts
- Formal semantics consists of three parts:
  - Syntax of a language
  - Semantic domain
  - Semantic mapping





# **Static Semantic Conflict**



- Occurs due to violation of language constraints
- In modeling e.g., by violation of relationships, context conditions, consistency or violation of integrity



#### Features of Version Control Systems

# **Behavioral Semantic Conflict**





Tutorial@iiWAS2009/MoMM2009

# **Linguistic Semantic Conflict**



Occurs e.g., if two VCS users edit the same artifact with the same intentions but utilized different literal designations.







## **Conflict Resolution Phase**



#### Support for semi-automatic resolution

- Dependency analysis to identify resolution orders
- Resolution patterns/policies



# Challenges in Model Versioning

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



# **Existing Systems**

| Alienbrain                                              | Audoo      | desk Vault | Vesta        |                             |
|---------------------------------------------------------|------------|------------|--------------|-----------------------------|
| Ope                                                     | enCVS      | GNU arch   |              |                             |
| AllChange                                               | CVS        | Aldon      | Subversion   | FirePublish                 |
| LibreSource                                             | FileHamste | sVK        |              | Monotone                    |
| git                                                     |            |            | Mercurial    | CollabNet                   |
| E                                                       | Bazaar     | Aegis      |              | ArX                         |
| AllFusion Harves                                        | t CVSNT    |            | DVCS         | Evolution                   |
| EVS                                                     |            | Codeville  |              | ClearCase                   |
| Darcs                                                   |            |            | Fossil       |                             |
|                                                         | BitKeeper  | •          |              |                             |
| Issues and Challenges in M<br>Tutorial@iiWAS2009/MoMM20 |            |            | DiplIng. Ker | 38/77<br>rstin Altmanninger |
|                                                         |            |            |              |                             |

## **Survey Result about available Model VCSs**

|                  |         |       |        | Со    | mpa        | aris | on                  |       |              |         |           | Con           | flict       | t Do   | etec       | tio     | n              |              |                |           | flic<br>luti |                 | Merge      |
|------------------|---------|-------|--------|-------|------------|------|---------------------|-------|--------------|---------|-----------|---------------|-------------|--------|------------|---------|----------------|--------------|----------------|-----------|--------------|-----------------|------------|
|                  |         | D     | Dasis  | qu+uM | זעומנטון   | 4    | Kepre-<br>sentation |       | Granularity  |         |           | Conflicto     | COIIIICCS   |        |            |         | V ISUAIIZAUUII | Presentation | Automati-      | zation    |              |                 |            |
| Approaches       | Generic | State | Change | UUID  | Heuristics | Line | Tree                | Graph | Configurable | Textual | Syntactic | Composite Op. | Equivalence | Static | Behavioral | Textual | Graphical      | Grouping     | Semi-automatic | Automatic | Dependencies | Recommendations | Validation |
| Subversion       | +       | +     | -      | -     | +          | +    | —                   | -     | -            | +       | -         | -             | -           | -      | —          | +       | -              | -            | -              | —         | —            | -               | —          |
| RSA              | -       |       |        | +     | Ι          | I    | I                   | +     | Ι            | Ι       | +         | I             | Ι           | Ι      | Ι          | I       | +              | +            | -              | I         | I            | -               | ~          |
| EMF Comp.        | +       | +     | Ι      | +     | +          | Ι    | Ι                   | +     | Ι            | -       | +         | Ι             | Ι           | Ι      | Ι          | Ι       | +              | +            | -              | Ι         | I            | Ι               | —          |
| Alanen & Porres  | +       | +     | -      | +     | -          | -    | -                   | +     | -            | -       | +         | -             | -           | -      | -          | 1       | -              | -            |                | -         | -            | -               | ~          |
| Unicase          | -       | -     | +      | +     | -          | -    | -                   | +     | -            | -       | +         | +             | -           | ~      | -          | -       | +              | +            | +              | -         | -            | -               | —          |
| Oda & Saeki      | ~       | -     | +      | +     | -          | -    |                     |       | -            | -       | +         | -             | -           | -      | -          |         |                |              | —              | -         | -            | -               | —          |
| CoObRA           | -       | -     | +      | +     | -          | -    | -                   | +     | -            | -       | +         | -             | -           | -      | -          | +       | -              | -            | -              | -         | -            | -               | -          |
| Cicchetti et al. | -       | -     | +      | +     | -          | -    | -                   | +     | -            | -       | -         | +             | -           | -      | -          | -       | -              | -            | +              | -         | -            | -               | —          |
| Odyssey-VCS      | -       | +     | -      | +     | -          | -    | -                   | +     | +            | -       | +         | -             | -           | -      | -          |         |                |              | -              | -         | -            | -               | -          |
| SMoVer           | +       | +     | -      | +     | -          | -    | —                   | +     | +            | -       | +         | -             | +           | +      | +          | +       | -              | +            | -              | -         | -            | -               | —          |
| Legend: +        | Sup     | opor  | ted    | E     | ~          | par  | tly s               | supp  | ort          | ed      | Ľ         | -             | not         | sup    | opoi       | ted     |                |              | not            | t ap      | plica        | able            | 1          |

# **Overall Challenges**

## General

- Mismatch in representation
- Bounded to modeling environment
- Inflexible in modeling language
- Too generic
- Various serialization variants
- Disregard of dependencies between artifacts

## Comparison Phase

- Non-configurable
- Conflict Detection
  - Erroneous conflict detection
    - Missing interpretation of semantics of artifacts
    - Missing information about edit operations in state-based systems
  - Unsatisfactory conflict visualization
- Unsupportive Conflict Resolution
- Inconsistent Merged Model Versions



# Why not using Subversion with Unix diff? (1/2)



Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009

# Why not using Subversion with Unix diff? (2/2)



Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



# **Specific vs. Generic VCSs for Model Artifacts**



- How can a standalone VCS for model artifacts be realized without depending on the traces of changes on the artifact, performed by modelers?
- How can a VCS for model artifacts be realized without depending on a concrete modeling language?
- How can such a system be generic but provides accurate conflict detection and supportive conflict resolution support?



# **Serialization Variants**

- For standalone VCSs the versions of model artifacts need to be exchanged between the modeling environment and the VCS
- Modeler may use different modeling environments to edit model artifacts from the repository
- Problems:
  - Modeling environments may export different XMI variants (those XMI representations of a model artifact may vary considerably)
  - Modeling environments may utilize divergent metamodels of a modeling language (e.g., various UML implementations exist)
- Summing up those cannot be utilized in the VCS right away
- Solution: Adapters to import different XMI representations are indispensable



# **Dependencies between Artifacts**

- Artifacts in a repository may depend on each other (may have communalities)
- If e.g., a class is renamed in a UML class diagram this has an effect on the UML Sequence Diagram instantiating this class





Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009

# **Comparison Phase**

Comparison

Conflict Detection

Conflict Resolution

Merge

- On which granularity level should the comparison be performed?
- For generic VCSs the granularity level should be configurable for specific languages and by VCS users. How can this be realized?
- How can composite operations (like refactorings) be detected in state-based systems?
- Which information is needed for the following phases conflict detection and resolution?



# **Conflict Detection Phase**

Comparison

Conflict Detection

Conflict Resolution

Merge

How can accurate conflict detection be achieved?

- avoid falsely indicated conflicts
- find undetected conflicts
- How can conflicts be presented?
- What should be presented to the user?
  - Tentative merge (apply only non-conflicting changes)
  - Left change, right change, resolution patterns



# **Conflict Resolution Phase**

Comparison Conflict Resolution Merge

- Which influence has the resolution order, in which conflicts are resolved, to the overall effort to combine two versions?
- How can a VCS user be assisted in the resolution of conflicts by the system?
- Can recurring conflict resolution activities by users be prevented?
- If VCSs can learn from conflict resolution activities, how can rules be applied on similar conflicting situations?



# **Merge Phase**



- How can it be ensured that only valid models are saved in the repository?
- How can it be prevented that information gets lost after the merge of two artifacts?



# Discussion

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



# Questions

- Are there more challenges and issues?
- What are your expectations on Version Control Systems for models?
- Do we really need Version Control Systems dedicated for model artifacts?
- Versioning habits?
- ...



|                                                     | Discussion                                                                                                                    |  |  |  |  |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Questionnaire                                       | http://www.modelversioning.org                                                                                                |  |  |  |  |  |  |
|                                                     | Background                                                                                                                    |  |  |  |  |  |  |
| You are here: <u>Home</u> ► <u>Poll (Umfrage)</u> ► | Which role do you mainly play in projects?<br>manager developer architect tester others                                       |  |  |  |  |  |  |
| Project Information                                 | Which other roles do you occasionally have in projects?                                                                       |  |  |  |  |  |  |
| About AMOR                                          | manager developer architect tester others                                                                                     |  |  |  |  |  |  |
| Partners                                            |                                                                                                                               |  |  |  |  |  |  |
| Publications                                        | How is your team geographically distributed?                                                                                  |  |  |  |  |  |  |
| Prototypes<br>Evaluation                            | <ul> <li>in the same building</li> <li>in the same town</li> <li>in the same time zone</li> <li>all over the world</li> </ul> |  |  |  |  |  |  |
| Links                                               | How many people typically participate in your projects?                                                                       |  |  |  |  |  |  |
| Poll (Umfrage)<br>Fragebogen                        | up to 5 persons up to 20 persons up to 100 persons more                                                                       |  |  |  |  |  |  |
| Questionnaire                                       | Versioning Habits                                                                                                             |  |  |  |  |  |  |
|                                                     | What version strategy do you apply?                                                                                           |  |  |  |  |  |  |
|                                                     | <ul> <li>pessimistic (lock/modify/unlock)</li> <li>optimistic (modify/merge)</li> <li>none at all</li> </ul>                  |  |  |  |  |  |  |

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



## **Research Objectives**

## General

- Mismatch in representation
- Bounded to modeling environment
- Inflexible in modeling language
- Too generic
- Various serialization variants
- Disregard of dependencies between artifacts
- Comparison Phase
  - Non-configurable
- Conflict Detection (CD)
  - Erroneous conflict detection
    - Missing interpretation of semantics of artifacts
    - Missing information about edit operations in state-based systems
  - Unsatisfactory conflict visualization
- Unsupportive Conflict Resolution (CR)
- Inconsistent Merged Model Versions







# **Partners**

- AMOR: Adaptable Model Versioning
  - FFG FIT-IT Semantic Systems Project
  - Duration: Feb. 2009 Jan. 2011

## **Industrial Partner:**



## **Academic Partners:**



TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology



IFS

**Business Informatics Group (BIG)** Institut für Software Technik und Interaktive Systeme

Arbeitsgruppe Information Systems (IFS)



Netzwerk für Forschung, Lehre und Praxis



Institut für Bioinformatik Institut für Telekooperation (TK)











Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



# **Configurable Comparison – Motivation**



## Advantages:

- Configurable for specific user desires
- Configurable for specific modeling languages



# **Configurable Comparison**

- By inspecting the structural features, namely
  - the attributes and
  - references of a model element

one can determine whether the model element as a whole has been updated

- Particularly four different strategies for the detection of structural changes in a graph that are of interest for conflict detection can be identified
  - Attribute update (**ATT**)
  - Reference update (**REFS**)
  - Role update (**ROL**)
  - Referenced element update (**REF**)
- By setting of those strategies on model elements and properties configurable comparison can be achieved



# **Architecture of Semantic Conflict Detection**



Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009

# **Example of Semantic Conflict Detection**





Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009

# **Operation Recorder – Motivation**

- Detection of composite operations and refactorings enables...
  - More accurate conflict detection
  - Smart conflict resolution
- Composite operations in modeling environments (accomplished by experts)
   → Fixed, pre-defined composite operations
- Hardly possible to predefine all relevant composite operations
   → Highly valuable to enable "usual modelers" to specify composite operations
- Modelers have domain knowledge
   → But, usually no knowledge on model transformation techniques



## **Operation Recorder**



# **Supportive Conflict Resolution**

## Goal

- Accelerate conflict resolution
- Minimize errors

## Proposed Solution

- Infer general resolution strategies from accumulated historical data
- Provide enhanced resolution support for repetitive conflict situations
- Apply collaborative merge in order to capture all user intentions



# **Architecture for Conflict Resolution**





# **Conflict Resolution: Motivation Example**





Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



# ... but sometimes this will not be enough

# ... then Lisa and Bart must resolve the conflict together



# Why Collaborative Conflict Resolution?



## → Automatic resolution is not possible here!

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009

# Why Collaborative Conflict Resolution?



→ Higher semantics
→ Better quality

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009





# Summary: AMOR Workflow (1/2)





# Summary: AMOR Workflow (2/2)



Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009



# **Model Driven Development**

## Books

- K. Czarnecki, U.W. Eisenecker: Generative Programming: Methods, Tools, and Applications. Addison-Wesley, 2000
- D.S. Frankel: Model Driven Architecture Applying MDA to Enterprise Computing. Wiley, 2003
- J. Greenfield, K. Short: Software Factories. Wiley, 2004
- S.J. Mellor, M.J. Balcer: Executable UML: a foundation for model-driven architecture. Addison-Wesley, 2002
- IEEE Computer, Special Issue on Model Driven Engineering. February 2006
- Cover Feature: Model Driven Engineering by Douglas Schmidt, Vanderbilt University

## Websites

- www.codegeneration.net/
- www.metacase.com
- www.planetmde.org
- www.omg.org/mda/
- www.modelware-ist.org





# Versioning (1/2)

## Articles

- Altmanninger, K., Seidl, M. and Wimmer, M., "A Survey on Model Versioning Approaches", International Journal of Web Information Systems (IJWIS), Vol. 5 No. 3, 2009
- Conradi, R. and Westfechtel, B., "Towards a uniform version model for software configuration management", *Software Configuration Management*, Springer, 1997
- Mens, T. "A state-of-the-art survey on software merging", *IEEE Transactions on Software Engineering*, Vol. 28 No. 5, 2002
- Estublier, J., Leblang, D., van der Hoek, A., Conradi, R., Clemm, G., Tichy, W. F. and Wiborg-Weber, D., "Impact of software engineering research on the practice of software configuration management", ACM Transactions on Software Engineering and Methodology, Vol. 14 No. 4, 2005



# Versioning (2/2)

## Conference & Workshop Papers

- Alanen, M. and Porres, I.: Difference and Union of Models. In UML 2003 The Unified Modeling Language, Springer, 2003.
- Altmanninger, K.: Models in Conflict Towards a Semantically Enhanced Version Control System for Models. In Models in Software Engineering; Workshops and Symposia at MoDELS 2007, Springer, 2008.
- Cicchetti, A., Ruscio, D. D. and Pierantonio, A.: A Metamodel Independent Approach to Difference Representation. In Journal of Object Technology, Vol. 6 No. 9, 2007.
- Kögel, M.: Towards Software Configuration Management for Unified Models. In Proceedings of the International Workshop on Comparison and Versioning of Software Models (CVSM), Leipzig, Germany, ACM, 2007.
- Murta, L., Corrêa, C., Jo a. G. P. and Werner, C.: *Towards Odyssey-VCS 2: Improvements over a UML-based Version Control System.* In Proceedings of the International Workshop on Comparison and Versioning of Software Models (CVSM) in conjunction with the International Conference on Software Engineering, Leipzig, Germany, ACM, 2008.
- Oda, T. and Saeki, M.: *Meta-modeling based Version Control System for Software Diagrams*. In IEICE Transactions on Information and Systems, Vol. E89-D No. 4, 2006.
- Schneider, C., Zündorf, A. and Niere, J.: CoObRA A small step for development tools to collaborative environments. In Proceedings of the Workshop on Directions in Software Engineering Environments in conjunction with the 26<sup>th</sup> International Conference on Software Engineering (ICSE), 2004.

# **AMOR Project**

- Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Schwinger, W., Seidl, M. and Wimmer, M.: AMOR towards adaptable model versioning. In 1<sup>st</sup> International Workshop on Model Co-Evolution and Consistency Management (MCCM) in conjunction with the 11<sup>th</sup> International Conference on Model Driven Engineering Languages and Systems (MODELS), 2008.
- Brosch, P.: Improving conflict resolution in model versioning systems. In Proceedings of the Doctoral Symposium at the 31<sup>st</sup> International Conference on Software Engineering (ICSE), Companion Volume, pp. 355–358, 2009.
- Brosch, P., Langer, P., Seidl, M. and Wimmer, M.: *Towards end-user adaptable model versioning: The by-example operation recorder*. In Proceedings of the International Workshop on Comparison and Versioning of Software Models (CVSM) in conjunction with the 31<sup>st</sup> International Conference on Software Engineering (ICSE), IEEE Computer Society, pp. 55–60, 2009.
- Altmanninger, K., Seidl, M. and Wimmer, M.: A survey on model versioning approaches. In International Journal of Web Information Systems (IJWIS), vol. 5, no. 3, pp. 271-304, 2009.
- Brosch, P., Langer, P., Seidl, M. and Wimmer, M.: We can work it out: Collaborative Conflict Resolution in Model Versioning. Accepted for the European Conference on Computer Supported Cooperative Work, 2009.
- Brosch, P., Langer, P., Seidl, M., Wieland, K. and Wimmer, M.: *Mining of Model Repositories for Decision Support in Model Versioning*. Accepted for the Second Model-Driven Tool & Process Integration Workshop, 2009.
- Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Retschitzegger, W. and Schwinger, W.: An Example is Worth a Thousand Words: Composite Operation Modeling By-Example. In Proceedings of the 12<sup>th</sup> International Conference on Model Driven Engineering Languages and Systems, Denver, Colorado, USA, October 4-9, 2009.
- Wieland, K.: Advanced Conflict Resolution Support for Model Versioning Systems. In Proceedings of the Doctoral Symposium at the 12<sup>th</sup> International Conference on Model Driven Engineering Languages and Systems (MODELS), Denver, Colorado, USA, October 2009.
- Altmanninger, K., Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K. and Wimmer, M.: *Why Model Versioning is Needed!? An Experience Report*. In Proceedings of the Models and Evolution Workshop, joint MODELS Workshop on Model-Driven Software Evolution (MoDSE) and Model Co-Evolution and Consistency Management (MCCM) at the 12<sup>th</sup> International Conference on Model Driven Engineering Languages and Systems (MoDELS), Denver, CO, USA, October 2009.



## Thank you for your attention!



http://smover.tk.uni-linz.ac.at



http://www.modelversioning.org

Issues and Challenges in Model Versioning Tutorial@iiWAS2009/MoMM2009

