
AI-BigData Convergence (ABC) Forum
2023

Tutorial

Won Kim

Demystifying
Large Language Models

and GPT

Objective of This Tutorial

◼ Provide a broad introduction to beginners as a
good starting point for in-depth learning on

◼ what’s inside the LLM blackbox, in particular,

◼ training, inference, and performance of LLMs.

◼ how training text data is transformed to
numbers for input to the Transformer.

◼ how the input data flows through the
Transformer architecture for training and
inference.

◼ and a snapshot and prognosis of LLMs.

2

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

3

Roadmap: Introduction

◼ A Snapshot of the Field

◼ LLM and Foundational Model

4

LLMs Galore (1/2)

◼ https://arxiv.org/abs/2303.18223ttps://analyticsindiamag.com/top-10-
alternatives-to-gpt-3/

◼ https://en.wikipedia.org/wiki/Foundation_models

◼ https://businesschief.asia/technology/how-china-is-racing-to-launch-
genai-models-to-rival-chatgpt

◼ OpenAI/MS (GPT-1, GPT-2, GPT-3, GPT-3.5, GPT-4)

◼ Google (BERT, T5, LaMDA, GLaM, PaLM, PaLM2)

◼ DeepMind (Gopher, ChinChilla)

◼ MS (Turing-NLG)

◼ MS and NVidia (Megatron-Turing NLG)

◼ Meta (XLM, RoBERTa, LLaMA 2)

◼ Amazon (Titan, AlexaTM)

◼ Anthropic (Claude), Cohere (Cohere Command)

◼ IBM (Watson X)
5

LLMs Galore (2/2)

◼ China (238 LLMs)

◼ Baidu (Ernie 3.0, 3.5), Alibaba Cloud (Tongyi
Qianwen), Tencent (Hunyuan), Huawei Cloud (Pangu
3.0), JD.com (ChatRhino)

◼ Korea

◼ Naver (HyperCLOVA X), LG AI (ExaOne), KT (MiDeum),
SKT, Kakao, Conan (ConanLLM), TUNiB (Polyglot), etc.

◼ Israel

◼ AI21 Labs (Jurassic 1, Jurassic 2)

◼ Arabic

◼ NOOR

6

Open Source LLMs (1/2)

◼ Hugging Face (open source ML community)

◼ develops tools and resources, including Transformer
library and APIs, to build, deploy, and train machine
learning models

◼ BLOOM

◼ 176 billion parameters, trained on 1.6TB of text data

◼ can generate text in 46 natural languages and 13
programming languages

◼ (Meta) OPT, LLaMA 2 (for research only), Open LLaMA

◼ Falcon (Abu Dhabi)

◼ Apache 2.0 license (can use commercially)

◼ trained on 11 languages

◼ (Databricks) Dolly 2.0
7

Open Source LLMs (2/2)

◼ (ELeutherAI) GPT-Neo (open source GPT-2), GPT-J
(open source GPT-3)

◼ (100+ derived from LLaMA)

◼ Guanaco, Alpaca, Vicuna, Cerebras, etc.

◼ (Mosaic ML) MPT

◼ (Stability) StableLM

◼ (Google) T5

◼ (Together.ai, etc.) RedPajama

◼ (China, Singapore) NExT-GPT

◼ (Mistral AI, France) Mistral 7B

8

of Parameters of Some LLMs
◼ https://kyleake.medium.com/data-behind-the-large-language-models-llm-gpt-and-beyond-

8b34f508b5de

9Introduction | CS324 (stanford-cs324.github.io)

Model Organization Date Size (# Params)

ELMO AI2 Feb 2018 94 (million)

GPT OpenAI June 2018 110

BERT Google Oct 2018 340

XLM Facebook Jan 2019 655

GPT-2 OpenAI Mar 2019 1,500

RoBERTa Facebook July 2019 355

Megatron-LM NVidia Sep 2019 8300

T5 Google Oct 2019 11,000

Turing-NLG Microsoft Feb 2020 17,000

GPT-3 OpenAI May 2020 175,000

Megatron-

Turing NLG

MS/NVidia Oct 2021 530,000

Gopher DeepMind Dec 2021 280,000

GPT-4 : Some Incredible Numbers

◼ https://eightify.app/summary/artificial-intelligence-and-
technology/gpt-4-leak-unveiling-all-
details#:~:text=GPT%2D4's%20batch%20size%20increased,and%
20accessible%20for%20small%20businesses.

◼ https://beebom.com/best-large-language-models-llms/

◼ parameters : 1.76 trillion
◼ mixture of 8 models, each with 220 billion

parameters

◼ batch size :16 million

◼ context window size : 32k tokens

◼ Transformer layers : 128 layers

◼ Training cost : US$63 million, 25,000 NVidia A100
GPUs

10

Roadmap: Introduction

◼ A Snapshot of the Field

◼ LLM and Foundational Model

11

Language Model (1/2)

◼ https://dugas.ch/artificial_curiosity/GPT_architecture.html#:~:tex
t=Of%20course%2C%20the%20embedding%20dimensions,a%20
12288%20dimension%20embedding%20vector

◼ A language model determines the next word to
come after a given sequence of words.

◼ Inputs and outputs of a language model
◼ The input is a sequence of N words (tokens).

◼ The output is a guess for the word most likely to be
put at the end of the input sequence.

◼ (e.g.) sequence: Not all heroes wear -> (next word) capes

12

Language Model (2/2)

◼ But how do we append more than one word?
◼ Simple.

◼ After we get the next word, we add it to the
sequence, and get the following word.

◼ Not all heroes wear capes -> but

◼ Not all heroes wear capes but -> all

◼ Not all heroes wear capes but all -> villains

◼ Not all heroes wear capes but all villians -> do

◼ repeat as much as desired, and we end up with
long generated texts.

13

Large Language Model (LLM) (1/2)

◼ A language model can be of varying complexity,
from simple n-gram models to more
sophisticated neural network models.

◼ A large language model (LLM) refers to the use
of deep learning techniques and a large number
of parameters, which can range from millions
to hundreds of billions.

◼ An LLM is typically too massive to run on a
single computer and is, therefore, provided as a
service over an API or web interface.

14

Large Language Model (LLM) (2/2)

◼ An LLM can “learn” complex textual data and
generate new text that is coherent and
grammatically accurate.

◼ Thus an LLM can perform many types of natural
language processing(NLP) tasks,
◼ such as language translation, text summarization,

sentiment analysis, chatbot conversations, and more.

15

16

Note: GPT vs. LMM, GPT vs. ChatGPT

◼ GPT is an LLM, i.e., a language model, not an
app.

◼ ChatGPT is a web app (you can access it in your
browser) designed specifically for chatbot
applications—and optimized for dialogue.

◼ ChatGPT relies on GPT to produce text, like
explaining code or writing poems.

17

Chatbots Using LLM

◼ https://www.zdnet.com/article/best-ai-chatbot/

◼ OpenAI ChatGPT (uses GPT-3.5/4)

◼ MS Bing Chat (uses GPT-4)

◼ Perplexity AI (uses GPT-3/4)

◼ Jasper (for businesses) (uses GPT-3) (* for pay)

◼ YouChat (uses GPT-3)

◼ Chatsonic (by Whitesonic) (uses GPT-4) (* for pay)

◼ Google Bard (uses PaLM 2)

◼ …

18

Multimodal LLMs

◼ https://en.wikipedia.org/wiki/Generative_artificial_intelligence

◼ Input and output
◼ (input: text + image, text + audio, text + music,..)

(output: image, music, video,…)

◼ (input: image, output: text)

◼ (OpenAI) DALL-E, GPT-4 (Stability, open source) Stable
Diffusion, Midjourney, FireFly, (Google) Imagen

◼ (OpenAI) Codex

◼ (Google) MusicLM, MusicLM Pytorch (open source),
(Meta) AudioCraft (open source), (UK) AudioLDM

◼ (Google) PaLM-E, (MS) Florence

◼ (ModelScope, China) ZeroScope
19

Foundational Models

◼ https://en.wikipedia.org/wiki/Foundation_models

◼ A foundation model (also called base model) is
a large machine learning (ML) model

◼ trained on a vast quantity of data
◼ (often by self-supervised learning or semi-

supervised learning) and

◼ generates data, such that it (the model) can be
adapted to a wide range of downstream tasks.

20

Visualization

◼ https://blogs.nvidia.com/blog/2023/03/13/what-are-foundation-models/

21

Types of Foundation Models

◼ (* a simple taxonomy – there is no consensus taxonomy.)

◼ Large Language Models (LLMs)

◼ text input – text output

◼ GPT, BERT, T5,…

◼ Multimodal Models

◼ text input – image, music, etc. output

◼ Stable Diffusion, DALL-E, Imagen, Visual ChatGPT,
MusicLM

◼ Computer Vision Models

◼ generates labels from image, video data

◼ ResNet, EfficientNet, YOLO

◼ Generative Models

◼ generates data similar to input data

◼ GANs, VAEs (variational autoencoders) 22

Technology Trends

◼ Note: Moving at a break-neck pace, and there will be an
inevitable shakeout and settling in a few years.

◼ Formation of an LLM Ecosystem
◼ LLM, enabling tools, end-user applications and services

◼ Upsizing of LLM

◼ by BigTech companies

◼ Downsizing of LLM (sLLMs)

◼ 150 (as of September 2023)

◼ On-Premise LLMs/sLLMs

◼ Spread of Open Source LLMs

◼ many derived from Meta LLaMA

◼ Emergence of Multimodal LLMs
23

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

24

Roadmap: Training and Inference

◼ Pretraining

◼ Fine-Tuning

◼ Inferencing

◼ Hallucination

25

Pretraining

◼ https://jalammar.github.io/how-gpt3-works-visualizations-
animations/

◼ Turns initial random values of the model’s untrained
weights (parameters) to appropriate trained values.

26

self-supervised pretraining

Two Stages of Pretraining:
A First Look (1/2)

◼ https://ai.stackexchange.com/questions/40179/how-does-the-decoder-
only-transformer-architecture-work

◼ https://medium.com/data-driven-fiction/decoder-only-transformer-
model-521ce97e47e2

◼ First stage: Basic training
◼ The basic training proceeds roughly as follows:

◼ gather lots of text.

◼ strip the last word from that text.

◼ feed it as input into the Transformer.

◼ check if the prediction matches the word that was stripped, and

◼ backpropagate the error.

◼ After basic training is completed, we have an LLM which can
predict the next word based on a context.

◼ The basic training process involves self-supervised learning.
27

Preparing the Training Data

◼ For each sequence of ‘N’ words (tokens), prepare an
input sequence of ‘N-1’ words, and expected output
word.

◼ Example text : “I am learning data science”.
◼ Strip the last word from the text consecutively.

◼ (N=2) Input : [‘I’] Expected_output : [‘am’]

◼ (N=3) Input : [‘I’, ‘am’] Expected_output : [‘learning’]

◼ (N=4) Input : [‘I’, ‘am’, ‘learning’]

Expected_output : [‘data’]

◼ (N=5) Input : [‘I’, ‘am’, ‘learning’, ‘data’]

Expected_output : [‘science’]

◼ Every text/sentence/book/webpage can be separated
into sequences of words (tokens).

28

Training: A First Look (2/2)

◼ Second stage: Fine-tuning

◼ Note: Fine-tuning is not always necessary.

◼ Fine-tuning an LLM involves adjusting and
adapting a pretrained model to perform
specific tasks or to cater to a particular domain
more effectively.

◼ The process usually entails training the model
further on a smaller, targeted dataset that is
relevant to the desired task or subject matter.

29

Format of the Training and Validation
Datasets for Fine-Tuning

◼ The dataset is a set of question (‘prompt’) and answer
(‘completion’) pairs.

◼ The required Q&A format (and example in red)

{

"prompt": "What is the primary function of the

heart? ->",

"completion": """ The primary function of the heart is

to pump blood throughout the body.\n \n"""

}

◼ The Q&A pairs can be generated using ChatGPT.

30

Training Datasets and Context
Windows for the GPT Series

◼ https://www.makeuseof.com/gpt-models-explained-and-
compared/

31

Model Launch date Training data # of
Parameters

Dataset
size

Max Sequence
Length

GPT-1 June 2018 Common Crawl,
BookCorpus

117
million

4.5 GB 1024

GPT-2 Feb. 2019 Common Crawl,
BookCorpus,
WebText

1.5
billion

40 GB 2048

GPT-3 June 2020 Common Crawl,
BookCorpus,
Wikipedia, Book,
Articles, etc.

175
billion

580 GB 4096

GPT-4 March 2023 1760
billion

1 PB 8192

Training Cost

◼ Training of the GPT-2 (1.5 billion parameters) in 2019 cost
$50,000.

◼ Training of the PaLM (540 billion parameters) in 2022 cost
$8 million.

◼ Training ChatGPT took 10,000 NVidia GPUs.

◼ Training GPT-4 took 25,000 NVidia A100 GPUs.

◼ Lambdalabs estimated a hypothetical cost of around $4.6
million US dollars and 355 years to train GPT-3 (175 billion
parameters) on a single GPU in 2020, with lower actual
training time by using more GPUs in parallel.

◼ The explosion of the training cost (and unwanted
inclusion of private data to the training data) is leading to
the development of small specialized LLMs(sLLM).

32

Memory Needs for Training

◼ LLMs are typically trained with full- or half-
precision floating point numbers (float32 and
float16). One float16 has 16 bits, or 2 bytes.

◼ So one billion parameters require 2 gigabytes.

◼ The largest models typically have 100 billion
parameters, requiring 200 gigabytes to load,
◼ outside the range of most consumer electronics.

33

Meeting Major Challenges for LLM
Pretraining

◼ Approaches to speed up the training
◼ distributed training

◼ finding optimal architecture hyperparameters

◼ mixed precision training

◼ optimized (GPU) memory use

◼ Approach to improve performance and speed
up the training
◼ data preprocessing

34

Distributed Training

◼ https://huggingface.co/blog/pytorch-fsdp

◼ https://huggingface.co/docs/transformers/perf_train_gpu_one

◼ Data parallelism, using ZERO optimizer
◼ shard model parameters, gradients and optimizer states

across data parallel workers/GPUs

◼ CPU offload -- offload shards to the host CPU

◼ Tensor parallelism
◼ shard parameters of individual layers across

accelerators/GPUs

◼ Pipeline parallelism
◼ put different layers of the model across different

accelerators/GPUs and use pipelining

◼ Combination of the above
35

Finding Optimal Architecture
Hyperparameters

◼ https://huggingface.co/docs/transformers/perf_train_gpu_one

◼ Experiment and find an optimal choice
◼ batch size

◼ (gradient descent) optimizer

◼ Adam, AdamW, AdaFactor, 8-bit Adam, …

◼ architecture

◼ number of hidden layers, number of attention
heads, etc.

36

Optimized Memory Use: ZeRO (1/2)

◼ https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-
system-optimizations-enable-training-models-with-over-100-billion-
parameters/

◼ https://arxiv.org/pdf/1910.02054.pdf

◼ https://huggingface.co/blog/zero-deepspeed-fairscale

◼ ZeRO (Zero Redundancy Optimizer) paper from
Microsoft Research

◼ sharding and distributed storage of optimizer states,
gradients, and model parameters across GPUs, with
zero overlap.

◼ use of reduced precision or mixed precision for the
model parameters (weights) from float32 to float16 or
bfloat(brainfloat)16.

◼ Offloading some processing and memory needs to the
host CPU.

37

Optimized Memory Use: ZeRO (2/2)

◼ Two open-source implementations of ZeRO
◼ (Microsoft) DeepSpeed library

◼ (Meta) FairScale or PyTorch FSDP(Fully Sharded Data
Parallel) library

◼ Integrated with the Transformer and included in
the Hugging Face Trainer

38

Data Preprocessing

◼ https://wandb.ai/wandb_gen/llm-data-
processing/reports/Processing-Data-for-Large-Language-Models-
-VmlldzozMDg4MTM2

◼ remove junk data

◼ remove machine-generated text

◼ remove duplicated data

◼ normalize data

◼ augment data

◼ seperate training data and testing data

◼ filter toxic and biased data

◼ …

39

Roadmap: Training and Inference

◼ Pretraining

◼ Fine-Tuning

◼ Inferencing

◼ Hallucination

40

Fine-Tuning

◼ Fine-tuning can be done on the entire neural
network, or on a subset of its layers.

◼ Fine-tuning can be combined with
a reinforcement learning from human feedback.

◼ ChatGPT and (DeepMind) Sparrow are examples.

◼ A model may also be augmented with adapters
that consist of far fewer parameters than the
pretrained model.
◼ Only the weights of the adapters are fine-tuned,

leaving the rest of the model's weights frozen.

41

Parameter-Efficient Fine-Tuning
(PEFT)

◼ https://www.leewayhertz.com/parameter-efficient-fine-tuning/

◼ Full fine-tuning trains the entire pretrained model,
including all its layers and parameters.
◼ This can be computationally very expensive.

◼ Parameter-efficient fine-tuning focuses on training
only a subset of the pretrained model’s parameters.
◼ This approach involves identifying the most

important parameters for the new task and only
updating those parameters during training.

42

PEFT Techniques

◼ Adapter

◼ LoRA (Low Rank Adaptation)

◼ Prefix Tuning

◼ Prompt Tuning

◼ P Tuning

◼ IA3 (Infused Adapter by Inhibiting and Amplifying Inner
Activations)

43

Adapter

◼ https://www.leewayhertz.com/parameter-efficient-fine-tuning/

◼ An adapter is a special submodule that can be
added to a pretrained LLM to modify its hidden
representation during fine-tuning.

◼ It is inserted after the attention and feed-
forward layers in the transformer architecture.

◼ Only the parameters in the adapters are
updated during fine-tuning
◼ while the rest of the model parameters is frozen.

44

Position and Architecture of the
Adapter in the Transformer

◼ Note: h : hidden representation of the model
◼ Δh: hidden representation of the adapter

45

LoRA (Low Rank Adaptation)

◼ https://www.leewayhertz.com/parameter-efficient-fine-tuning/

◼ https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-
parameter-an-in-depth-analysis-with-llama-2

◼ LoRA is implemented in the Hugging Face Parameter-
Efficient Fine-Tuning(PEFT) library.

◼ Similar to the adapters, LoRA is a small trainable
submodule that can be inserted into the Transformer
architecture.

◼ It involves freezing the pre-trained model weights and
injecting trainable “low rank decomposition matrices” into
each layer of the transformer architecture.

◼ LoRA can minimize the number of trainable parameters
by up to 10,000 times and the GPU memory needs by 3
times while still performing on par or better than fine-
tuning model quality on various tasks. 46

LoRA in the Transformer Architecture

◼ LoRA is inserted in parallel to the modules in
the pre-trained transformer model,
◼ (specifically) in parallel to each of the two feed-

forward layers.

◼ A feed-forward layer has two projection layers
and a non-linear layer in between them,
◼ where the input vector is projected into an

output vector with a different dimensionality
using an affine transformation.

47

Visualization

◼ Note: LoRA layers are inserted in parallel to the Feed-
Forward Layer.

48

Power of PEFT

◼ Guanaco (up to LLaMA-65B) using QLoRA achieved
99% ChatGPT performance on the Vicuna
benchmark

◼ trained on one GPU with 48GB of VRAM in 24
hours

◼ LLaMA-13B (13 billion parameters) outperformed
GPT-3 (with 175 billion parameters)

49

Roadmap: Training and Inference

◼ Pretraining

◼ Fine-Tuning

◼ Inferencing

◼ Hallucination

50

Inference (1/2)

◼ Doing inference with a Transformer is just like
training.

◼ You insert a prompt and out comes the next
word/classification/other.

◼ The prompt is extended one word at a time.
◼ You insert the prompt, and out comes the first word

of the answer.

◼ The first word of the answer is now added to the
prompt, creating a new, slightly different prompt.

◼ This prompt is again forwarded through the model,
giving the prediction of a new word. …

51

Inference (2/2)

◼ As the output is the probability for each token
to be the next one, you can do one of the
following during inference.

◼ (1) Take the token that has the highest
probability.
◼ The model becomes deterministic.

◼ (2) Sample from the probability distribution;
that is, you take a token that does not have the
highest probability.
◼ This induces some randomness into the algorithm.

52

Methods for Selecting the Next Token

◼ https://peterchng.com/blog/2023/05/02/token-selection-
strategies-top-k-top-p-and-
temperature/#:~:text=They%20are%20just%20ways%20to,certai
n%20probability%20mass%20(p).

◼ Many LLMs support sampling methods that control
the randomness of the selection of the next token.

◼ Three sampling methods

◼ top-k sampling

◼ top-p sampling

◼ temperature

◼ Note: The temperature parameter should be used
in conjunction with top-p or top-k.

53

Top-k Sampling

◼ Top-k sampling proceeds as follows:

◼ 1. Order the tokens in descending order of
probability.

◼ 2. Select the first k tokens to create a new
distribution.

◼ 3. Sample from those tokens.

◼ Example: k=3 ?

54

Top-p Sampling (1/2)

◼ This method (also called nucleus sampling), instead
of selecting top-k tokens, selects enough tokens to
“cover” a certain amount of probability defined by
the parameter p.

◼ Top-p sampling proceeds as follows:

◼ Order the tokens in descending order of
probability.

◼ Select the smallest number of top tokens such
that their cumulative probability is at least p.

◼ Sample from those tokens.

55

Top-p Sampling (2/2)

◼ Suppose p=0.5. Using the current example, top-(p=0.5)
sampling proceeds as follows:

◼ The top token, t0 is selected. It has a probability of 0.4

and the cumulative probability is 0.4 (less than p=0.5)

◼ So we select the next token.

◼ The next token, t1 has a probability of 0.2, and now the
cumulative probability is 0.6.

◼ The cumulative probability is at least p=0.5, so we stop.

◼ This results in only the top 2 tokens being selected:

56

Temperature (1/2)

◼ Top-k and top-p samplings operate on the softmax
output probabilities.

◼ However, the introduction of temperature results in a
change to the softmax function itself, as follows:

where i=1,…K, and T (>0) is the temperature

◼ The impact of 1/T on the softmax function

◼ If 0 < T < 1, zi values get pushed away from 0 and the
differences between input values get amplified.

◼ If T > 1, zi values get pushed toward 0 and the
differences between input values get reduced.

57

Visualization

◼ Note how different
values of T (0.25, 1,
3) alter the relative
differences
between elements
of the raw pre-
softmax vector.

58

Temperature (2/2)

◼ The temperature changes the shape of the softmax
output probability distribution.

◼ If the temperature increases, differences in output
probabilities are reduced, and more tokens end up with
probabilities close to the highest probability.

◼ The generated text will be more diverse, but there is
a higher possibility of grammar mistakes and
generation of nonsense (i.e., hallucination).

◼ If the temperature decreases, the highest probability
become more pronounced.

◼ The model will probably output the most correct text,
but rather boring, with small variation.

59

Examples

◼ https://algowriting.medium.com/gpt-3-temperature-setting-101-
41200ff0d0be

◼ (e.g.,) temperature=0

◼ prompt: “how to make“

◼ completion: “a good impression on a first date”

◼ (e.g.,) temperature=1

◼ prompt: “how to make“

◼ completion: “turban wrapped coconut hairdo” or

“mayo without almost no oil at all” or

“a new server in minecraft 1” or …

60

Beam Search

◼ https://towardsdatascience.com/foundations-of-nlp-explained-
visually-beam-search-how-it-works-1586b9849a24

◼ Selects the ’k’ best sequences of tokens
◼ considers the probabilities of the combination of all

of the preceding tokens along with the token in the
current position.

◼ Computationally more expensive, but produces more
accurate result

◼ “k” is a hyperparameter called “beam width”.

61

Prompt Engineering (1/2)

◼ https://en.wikipedia.org/wiki/Prompt_engineering

◼ LLMs can solve various target-specific tasks without
being fine-tuned.

◼ They only need to be "prompted", often using a few
examples of similar problems and their respective
solutions.

◼ Such “few-shot prompting” has sometimes given
even better results than fine-tuning in various tasks.

◼ translation, question answering, cloze tasks,
unscrambling words, using a novel word in a
sentence

◼ The creation and optimization of such prompts is
called prompt engineering.

62

Note: Zero-Shot, One-Shot, Few-Shot
Prompt

◼ Zero-shot prompt

task description: Translate English to French

prompt: cheese →

◼ One-shot prompt

task description: Translate English to French

example: sea otter → loutre de mer

prompt: cheese →

◼ Few-shot prompt

task description: Translate English to French

examples: sea otter → loutre de mer

peppermint → menthe poivre

plush giraffe → giraffe peluche

prompt: cheese → 63

Prompt Engineering (2/2)

◼ Prompt engineering involves

◼ phrasing a query

◼ specifying a style

◼ providing relevant context, or

◼ assigning a role to LLM, such as "Act as a native
French speaker".

◼ The user can use either a single prompt or multiple
successive prompts.

64

Prompt Engineering: Multiple
Successive Prompts (1/2)

◼ chain-of-thought prompt
◼ prompts the model to solve a problem as a series of

intermediate steps

◼ generated-knowledge prompt
◼ prompts the model to generate relevant facts for

completing the prompt, then proceed to complete
the prompt

◼ self-refine prompt
◼ prompts the model to solve the problem, then

prompt it to critique its solution, then prompt it to
solve the problem again

65

Prompt Engineering: Multiple
Successive Prompts (2/2)

◼ tree-of-thought prompt
◼ prompts the model to generate "possible next steps",

and then run the model on each of the possible next
steps

◼ least-to-most prompt
◼ prompts the model to list the sub-problems to a

problem, then solve them in sequence, with the help
of answers to previous sub-problems.

66

Prompt Marketplaces

◼ https://writesonic.com/blog/ai-prompt-marketplaces/

◼ Chatsonic prompt library (free, for ChatGPT)

◼ AIPRM : (for ChatGPT)

◼ PromptBase, ChatX
◼ (for DALL-E, Stable Diffusion, Midjourney, ChatGPT)

◼ FlowGPT : (for ChatGPT)

◼ PromptHero : (for ChatGPT, art prompts)

◼ …

67

In-Context Learning (1/2)

◼ https://medium.com/geekculture/how-to-build-chatgpt-
a01f9bd6d8ab

◼ The prompt is actually inserted into a larger prompt
that contains the entire conversation.

◼ This allows the language model to understand the
context of the conversation and respond appropriately.

68

In-Context Learning (2/2)

◼ Note that the model figures out what words
come next based on probabilities it learned
during pretraining.

◼ Each new prompt-completion pair is added to
the current conversation. This is how the model
“memorizes” the context of the new prompt.
◼ There is a limit on the sequence length (or

context window size).

◼ It is 4096 tokens for GPT-3.

69

Retrieval Augmented Generation (RAG)
(1/3)

◼ https://research.ibm.com/blog/retrieval-augmented-generation-
RAG

◼ It is a popular technique that supplements LLM’s
internal representation of information with facts
fetched from external sources.

◼ Benefits

◼ The model has access to the most current, reliable
facts.

◼ Users have access to the model’s sources, ensuring
that its claims can be checked for accuracy and
ultimately trusted.

◼ It reduces the chances that an LLM will leak sensitive
data, or ‘hallucinate’ incorrect or misleading
information. 70

Retrieval Augmented Generation (RAG)
(2/3)

◼ Retrieval phase
◼ It searches for and retrieves information

relevant to the user’s prompt.

◼ In an open-domain, consumer setting, they
can come from indexed documents on the
internet.

◼ In a closed-domain, enterprise setting, a
narrower set of sources are typically used for
added security and reliability.

◼ The external knowledge is appended to the
user’s prompt and passed to the language model.

71

Retrieval Augmented Generation (RAG)
(3/3)

◼ Generative phase
◼ LLM draws from the augmented prompt and its

internal representation of its training data to
synthesize an answer tailored to the user.

◼ The answer can then be passed to the
application (e.g., chatbot) with links to its
sources.

72

Roadmap: Training and Inference

◼ Pretraining

◼ Fine-Tuning

◼ Inferencing

◼ Hallucination

73

Hallucination

74

https://blog.finxter.com/hallucinations-in-ai-with-chatgpt-examples/

Hallucination

◼ https://machinelearningmastery.com/a-gentle-introduction-to-
hallucinations-in-large-language-models/

◼ https://www.telusinternational.com/insights/ai-data/article/generative-
ai-hallucinations

◼ Hallucination refers to a phenomenon where the model
generates text that is incorrect, nonsensical, or not real.

◼ LLMs generate text as an extrapolation from the
prompt.

◼ The result of extrapolation is not necessarily
supported by any training data, but is the most
correlated with the prompt.

◼ Hallucinations make the result of an LLM worse than
the combined results of multiple Internet searches.

◼ Hallucinations are unavoidable in a language model.
75

Examples (1/2)

◼ In response to a prompt “tell me about Professor
Jonathan Turley”, ChatGPT answered that
“Professor Jonathan Turley has been accused of
sexual harassment in a 2018 Washington Post
article after groping law students on a trip to
Alaska.”

◼ Professor Turley: “It was a surprise to me since I
have never gone to Alaska with students; The
Washington Post never published such an article,
and I have never been accused of sexual
harassment or assault by anyone.”

76

Examples (2/2)

◼ prompt: “(with a spec) write a program to build a
decision tree classifier in COBOL” (SQL, HTML)

◼ completion: (shown the beginning part only)
IDENTIFICATION DIVISION.

PROGRAM-ID. DecisionTree.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 Example.

05 District PIC X(10).

05 House-Type PIC X(12).

05 Income PIC X(5).

05 Previous-Cust PIC X(3).

05 Outcome PIC X(15).

01 Node.
05 Attribute PIC X(12).

05 ChildNodes OCCURS 0 TO 10 TIMES DEPENDING ON Num-ChildNodes.

10 ChildNode.

15 AttributeValue PIC X(10).

15 Pointer USAGE IS POINTER.

05 Outcome PIC X(15).
77

GPT-4 and Factuality

◼ GPT-4 scored close to 80% in factuality (free of
hallucination) evaluations across several
categories,

◼ while GPT-3.5 scored under 50%.

78

Causes of Hallucination

◼ Hallucination is the Achilles heel of LLM.

◼ On a high level, the following problems related to
the dataset and model training can lead to
hallucination.

◼ insufficient data, insufficient context in the
training data

◼ noise data

◼ overfitting of the model

◼ problems with data encoding and decoding

◼ randomness in sampling the next-word

79

Mitigating Hallucinations:
Two General Approaches

◼ Train LLM on a diverse and representative
dataset that covers a wide range of real-world
examples.
◼ RAG(Retrieval Augmented Generation)

◼ Include human feedback in the training process.
◼ Incorporate an understanding of the world that

only a human can have into the trained model.

80

Utilizing Hallucinations as a Valuable
Feature of LLM

◼ We may want LLM to hallucinate if we want it to
be “creative”.
◼ (e.g.) If we want LLM to give a plot of a fantasy story,

we may not want it to copy from any existing one but
to generate a new character, scene, and storyline.

◼ We may want LLM to brainstorm for us.
◼ (e.g.) If we seek ideas, hallucinations can help explore

different possibilities.

81

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

82

Performance of GPT on
Standard NLP Modeling Tasks

83

Model GLUE LAMBADA SQuAD F1
SQuAD Exact

Match

GPT-1 68.4 48.4 82.0 74.6

GPT-2 84.6 60.1 89.5 83.0

GPT-3 93.2 69.6 92.4 88.8

GPT-3.5 93.5 79.3 92.4 88.8

GPT-4 94.2 82.4 93.6 90.4

Scores of GPT series in standard NLP Modeling tasks:
GLUE, LAMBADA and SQuAD.

All numbers are in percentages. (source – BARD)

GPT Performance on MBE (multistate
bar exam)

84

LLM Performance Benchmarks

◼ https://www.whytryai.com/p/llm-benchmarks

◼ https://msandbu.org/benchmarking-llms-and-what-is-the-best-llm/

◼ https://deepgram.com/learn/llm-benchmarks-guide-to-evaluating-
language-models

◼ https://analyticsindiamag.com/the-problems-with-llm-benchmarks/

◼ There are many benchmarks and tests, and they are
evolving.

◼ They can be helpful to users and developers of LLMs as
a guide for adoption and further development.

◼ However, they have limitations.

◼ They do not necessarily represent real-world usage.

◼ They are often too narrow in scope.

◼ The training dataset may contain errors.

85

Categories of LLM Benchmarks

◼ https://www.whytryai.com/p/llm-benchmarks

◼ (* Note: There is no consensus taxonomy.)

◼ Natural language processing (NLP)

◼ General knowledge and common sense

◼ Problem solving and advanced reasoning

◼ Coding

86

NLP Benchmarks (1/3)

◼ GLUE (General Language Understanding Evaluation)

◼ SuperGLUE

◼ Natural Questions

◼ WinoGrande

◼ TriviaQA

◼ MultiMLI (Multi-Genre Natural Language Inference)

◼ QuAC (Question Answering in Context)

◼ HellaSwag
◼ (Harder Endings, Longer contexts, and

Low-shot Activities for

Situations With Adversarial Generations)

87

General Knowledge and Common
Sense Benchmarks

◼ ARC (AI2 Reasoning Challenge)

◼ MMLU (Massive Multitask Language Understanding)

◼ OpenBookQA

◼ PIQA (Physical Interaction: Question Answering)

◼ SciQ

◼ TruthfulQA (* factuality test)

88

Problem Solving and Advanced
Reasoning Benchmarks

◼ AGIEval

◼ BigBench (Beyond the Imitation Game)

◼ BOOIQ

◼ GSM8K

89

Coding Benchmarks

◼ CodeXGLUE (General Language Understanding
Evaluation benchmark for CODE)

◼ HumanEval

◼ MBPP (Mostly Basic Python Programming)

90

Sample Q&A (1/5)

◼ WinoGrande

91

Twin sentences options
a Ann asked Mary what time the library

closes, because she had forgotten
Ann/Mary

b Ann asked Mary what time the library
closes, but she had forgotten

Ann/Mary

Sample Q&A (2/5)

◼ HellaSwag

92

Sample Q&A (3/5)

◼ ARC (AI2 Reasoning Challenge)

93

Sample Q&A (4/5)

◼ Big-Bench (Beyond the Imitation Game)

94

Sample Q&A (5/5)

◼ HumanEval

◼ (* the last line is the code.)

95

Benchmark Platforms

◼ https://msandbu.org/benchmarking-llms-and-what-is-the-best-
llm/

◼ HuggingFace Leaderboards for open LLMs includes
◼ ARC, HellaSwag, MMLU, TruthfulQA

◼ GPT4ALL includes
◼ HellaSwag, BOOIQ, PIQA, WinoGrade, OpenBookQA,

AGIEval

◼ Alpaca Evaluation Leaderboards

◼ (Stanford) Holistic Evaluation of LM (HELM)

96

Benchmark Scores and Number of
Model Parameters

◼ https://msandbu.org/benchmarking-llms-and-what-is-the-best-
llm/

◼ There is a positive correlation between the
number of LLM model parameters and the
benchmark scores.
◼ GPT models (especially GPT-4) and LLaMA show

that the higher the number of parameters the
higher the score in the different benchmarks.

97

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

98

GPT-3 Tokenization Example

◼ https://jalammar.github.io/illustrated-transformer/

◼ Note: An LLM token is NOT necessarily a full word; it
may be a full word, a sub-word, a character, or a
symbol.

◼ Example Input sentence
◼ “The animal didn’t cross the street because it was

too tired”

◼ Tokenized input sentence
◼ The _ animal_ didn_ ‘_ t_ cross_ the_

street_ because_ it_ was_ too_ tire_ d_

99

Tokenization

◼ https://huggingface.co/docs/transformers/tokenizer_summary

◼ LLMs are mathematical functions whose input and
output are lists of numbers. Consequently, words
must be converted to numbers.

◼ Tokenizer splits a text into words or subwords,
which then are converted to integer indexes into a
vocabulary table.

◼ The integer indexes are in the range {0,1,2,3,…,V-
1}, where V is the vocabulary size, which can be
about 50,000.

◼ Transformers use 3 different tokenizers: Byte-Pair
Encoding (BPE), WordPiece, and SentencePiece.

100

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

101

Embedding and Position Encoding

◼ Each input word (token) enters the Transformer
after undergoing two types of encoding.

◼ embedding

◼ position encoding

◼ These encodings are trainable operations.

◼ This means that the encodings are not pre-
decided but are learned by the model.

◼ The embedding encodes the meaning of the word.

◼ The position encoding represents the position of
the word in the input sequence.

◼ These two encodings are vectors of numbers and
they are added.

102

Visualization

◼ https://datascience.stackexchange.com/questions/55901/in-a-
transformer-model-why-does-one-sum-positional-encoding-to-
the-embedding-ra

◼ For each input word, its corresponding embedding
vector and position encoding are element-wise added
and the combined vector is processed by the
Transformer.

103

Word Embedding Example

◼ An example word embedding for the word “king” is
shown below. A word embedding is a vector of N
numbers

◼ N could be 50 (below), 256, 512, or even12288.

◼ Each number has some meaning. But ordinary mortals
cannot make sense of these numbers.

[0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 ,

-0.08813 , 0.47377 , -0.61798 , -0.31012 , -0.076666, 1.493 ,

-0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 ,

-0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476 , -0.30344 ,

0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 ,

-0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 ,

-0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 , -1.0137 , -0.21585 ,

-0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042]

104

Two Types of Position Encoding (1/2)

◼ https://towardsdatascience.com/master-positional-encoding-
part-i-63c05d90a0c3

◼ https://towardsdatascience.com/master-positional-encoding-
part-ii-1cfc4d3e7375

◼ https://www.linkedin.com/posts/bai-li-73a844aa_rotary-
positional-embeddings-rope-combining-activity-
7094803097801142272-gLjw

◼ absolute and relative position encoding

◼ Absolute position encoding captures the absolute
position of a word in the input sequence.
◼ (e.g.) The first word has position 1, the 50th word

has position 50.

◼ sinusoidal position encoding – used in GPT series

105

Two Types of Position Encoding (2/2)

◼ Relative position encoding captures the relative
position two words have to each other.
◼ (e.g.) In “A dog chases a cat.”, the relative position

between words “dog” and “cat” would be 3.

◼ Some relative position encoding methods:
◼ rotary position embedding (RoPE) -- used in Google

PaLM, Meta LLaMA, EleutherAI (GPT-Neo, GPT-NeoX,
GPT-J)

◼ T5 Bias (Google T5: Text-to-Text-Transfer-
Transformers)

◼ ALiBi (Attention with Linear Biases)

106

Sinusoidal Position Encoding (1/2)

◼ https://towardsdatascience.com/transformers-explained-visually-
part-2-how-it-works-step-by-step-b49fa4a64f34

◼ The position constants are computed using the formula
below, where

◼ pos is the position of the word in the input sequence,

◼ dmodel is the length of the encoding (embedding) vector,

◼ i is the index value into the embedding vector.

107

Sinusoidal Position Encoding (2/2)

◼ This encoding interleaves a sine curve and a cosine curve, with sine
values for all even indexes and cosine values for all odd indexes.

◼ Suppose the input sequence has 40 words. The figure below shows
the encodings for the 0th index and 1st index of each of the 40
words.

◼ The blue curve shows the encoding of the 0th index, and the
orange curve shows the encoding of the 1st index.

◼ There are similar curves for all other index values.
108

Note

◼ For each word (token), position encoding vector is
generated corresponding to its position in the input
sequence.

◼ The position encoding vector for each word is
different.

◼ The length of the position encoding vector is the
same as the length of the input embedding of the
word.

◼ Each element of the position encoding vector has a
different value, and monotonically increases as the
index value increases.

◼ The position encoding vector and the input
embedding vector are element-wise added.

109

Rotary Position Embedding

◼ https://medium.com/@andrew_johnson_4/understanding-rotary-
position-embedding-a-key-concept-in-transformer-models-
5275c6bda6d0

◼ https://www.linkedin.com/posts/bai-li-73a844aa_rotary-positional-
embeddings-rope-combining-activity-7094803097801142272-gLjw

◼ Rotary Position Embedding (RoPE) uses absolute
sinusoidal positional encoding.

◼ However, instead of adding the positional
information to the token embedding, RoPE rotates
the token embedding in a high-dimensional space,
based on relative position of the tokens.

◼ The rotations preserve the token embedding, while
reflecting both absolute and relative positional
information. 110

Illustration

◼ https://arxiv.org/pdf/2104.09864.pdf

◼ Below, x1 and x2 are the first 2 elements of a token
embedding; Θi = 10000-2(i-1)/d, i ∈ [1, 2, …, d/2]

111

Matrix Dimensions (1/2)

◼ Deep learning models process a batch of
training samples at a time.

◼ The Embedding and Position Encoding layers
operate on matrices representing a batch of
sample sequence.

◼ The Embedding layer takes a (#samples x
sequence length) shaped matrix of word IDs.

◼ It encodes each word ID into a word vector
whose length is the embedding size, resulting
in a (#samples x sequence length x embedding
size) shaped output matrix.

112

Matrix Dimensions (2/2)

◼ The (#samples x sequence length x embedding
size) shape produced by the Embedding and
Position Encoding layers is preserved through
the Transformer.

◼ The 3D matrix is shown in the next page.

113

Visualization

114

Matrix Dimensions in GPT-3

◼ https://dugas.ch/artificial_curiosity/GPT_architecture.html#:~:tex
t=Of%20course%2C%20the%20embedding%20dimensions,a%20
12288%20dimension%20embedding%20vector

◼ sequence length: 2048 tokens

◼ embedding size (for each token): 12288 numbers

◼ position encoding size (for each position): 12288
numbers

◼ vocabulary size: 50257 tokens.

◼ batch size (#samples): 3.2 million
◼ 64 and 512 for GPT-1 and GPT-2, respectively.

115

Transformer Output

◼ The Transformer generates a vector y, which is a
probability distribution over the Transformer’s
vocabulary.

◼ The vector y is passed through softmax function to
obtain softmax(y) for output.

◼ softmax(y) has V entries, where V is the model’s
vocabulary size.

116

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

117

Attention

118

Attention Mechanism

◼ https://towardsdatascience.com/demystifying-efficient-self-attention-
b3de61b9b0fb#:~:text=The%20difference%20between%20regular%20at
tention,focuses%20on%20a%20single%20sequence.

◼ The key to the Transformer’s ground-breaking
performance is its use of the Attention
mechanism.

◼ It is basically a mechanism that dynamically
assigns a greater importance to a few key
tokens in the input sequence by altering the
token embeddings.

◼ The goal of Attention is to allow the model to
focus on (pay attention to) important parts of
the input sequence of tokens. 119

What Does Attention Do? (1/2)

◼ https://towardsdatascience.com/transformers-explained-visually-
part-1-overview-of-functionality-95a6dd460452

◼ Attention relates every word in the input sequence to
every other word in the input sequence.

◼ Example: Consider two sentences:

The cat drank the milk because it was hungry.

The cat drank the milk because it was sweet.

◼ In the first sentence, (for example) the word ‘it’ refers
to ‘cat’, while in the second ‘it’ refers to ‘milk.

◼ When the model processes the word ‘it’, Attention
gives the model more information about its meaning,
so that it can associate ‘it’ with the correct word.

120

Visualization (of the previous page)

◼ In the figures below, darker shade indicates closer
relationship (after training).

121first sentence second sentence

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

122

Transformer

123

Transformer Did Not Fall from the Sky
One Starry Night!

◼ https://en.wikipedia.org/wiki/Large_language_model#:~:text=A%20large
%20language%20model%20(LLM,millions%20to%20billions%20of%20we
ights.

◼ Key technologies that have led to the Transformer
◼ Markov chain (1907), n-gram model

◼ long short term memory (LSTM) network (1997)
◼ The idea was not feasible until GPUs became available in the 2010s

◼ AlexNet (2012) for image recognition -- by University of Toronto

◼ Word2vec (2013) – by Google
◼ Created word embeddings

◼ seq2seq (2014) -- by Google
◼ Used two LSTMs to perform machine translation

◼ Attention mechanism (2014) – by Google

◼ Google Translate (2016)
◼ Changed from statistical machine translation to neural machine

translation 124

Roadmap: Architecture -- Overall

◼ A Quick Look

◼ Decoder-only Architecture

125

Original Architecture

◼ The Transformer contains a
stack of Encoders and a stack
of Decoders.

◼ It contains Input Embedding
and Position Encoding layers
for both the Encoder and
Decoder stacks.

◼ It contains an Output layer,
which generates the final
output.

126

Encoder and Decoder (1/2)

◼ All the Encoders are identical to one another.

◼ Similarly, all the Decoders are identical.

◼ The Encoder contains the Self-Attention layer and a Feed-
Forward layer

◼ The Decoder also contains the Self-Attention layer and the
Feed-Forward layer, plus the Encoder-Decoder Attention
layer.

127

Encoder and Decoder (2/2)

◼ The Encoder and Decoder each
also has the following:

◼ Feed-Forward layer: learns
higher-level abstractions of the
input text.

◼ Two Layer Normalization layers:
enable smoother gradients by
normalizing the distributions of
the previous layers.

◼ Residual skip-connections around
the Self-Attention layer and the
Feed-Forward layer: ensure
proper backpropagation of the
gradients.

128

Attention Layer

◼ This is the key to the Transformer.

◼ The Attention mechanism allows LLM to attend
to the input text’s most relevant parts and
generate more accurate predictions.

129

Roadmap: Architecture -- Overall

◼ A Quick Look

◼ Decoder-only Architecture

130

Three Types of Transformer
Architecture

◼ https://medium.com/@yulemoon/an-in-depth-look-at-the-
transformer-based-models-22e5f5d17b6b

◼ Encoder-only
◼ BERT, RoBERTa, distilBERT, distilRoBERTa

◼ Encoder-Decoder
◼ T5

◼ Decoder-only
◼ GPT series, XLNet, LaMDa

131

Decoder-Only Transformer (1/2)

◼ The original encoder-decoder architecture fits
well with its primary application – machine
translation.

◼ However, it requires a significant amount of
task-specific training to fine-tune the model.

◼ The decoder-only architecture is substantially
more efficient to train, and is the dominant
form at very large scales.

132

Decoder-Only Transformer (2/2)

◼ Input and output of decoder-only Transformers

◼ The input is a prompt (often referred to as
context) fed into the Transformer.

◼ The output depends on the goal of the model.
For GPT models, the output is a probability
distribution of the next word that comes
after the prompt.

133

Architecture

◼ Consisting of N decoder
blocks (N=12 to 96 for
GPT-3)

134

GPT-3 Attention Dimensions (1/2)

◼ https://dugas.ch/artificial_curiosity/GPT_architecture.html#:~:tex
t=Of%20course%2C%20the%20embedding%20dimensions,a%20
12288%20dimension%20embedding%20vector

◼ https://lambdalabs.com/blog/demystifying-gpt-
3#:~:text=The%20smallest%20GPT%2D3%20model%20(125M)%
20has%2012%20attention,with%2096x%20128%2Ddimension%2
0heads.

◼ GPT-3 comes in eight sizes, ranging from 125M to 175B
parameters.

◼ The smallest GPT-3 model (125 million parameters) has
12 Attention layers.

◼ The largest GPT-3 model (175 billion parameters) uses
96 Attention layers.

135

GPT-3 Attention Dimensions (2/2)

◼ The input to each Attention head is a (#samples x
sequence length x embedding size) shaped matrix.

◼ sequence length = 2048

◼ embedding size = 12288

◼ Note:

◼ The result of each Attention head is a single 2048 x
128 matrix.

◼ The results of the 96 Attention heads are
concatenated together, yielding a 2048 x 12288
matrix.

◼ 96 x 128 = 12288 = embedding size

◼ This result is then multiplied with a linear projection
(which does not change the matrix shape).

136

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

137

Roadmap: Architecture -- Attention

◼ Overview

◼ Intuition

◼ Attention Score Calculation

◼ Matrix Flow

138

Architecture of the Attention Module

◼ The Attention module consists of three linear layers.

◼ The three layers produce three separate matrices —
known as the Query, Key, and Value matrices.

◼ The three matrices are used to compute the
attention scores.

◼ Each ‘row’ of the matrices corresponds to one word
(token) in the input sequence.

◼ The Query word can be interpreted as the word for
which we are calculating attention scores.

◼ The Key and Value word is the word to which we
are paying attention; i.e., how relevant that word
is to the Query word.

139

Visualization of the Three Linear
Layers

◼ Input sequence: “The ball is blue“

◼ * Note: The 3 matrices have the same input sequence.

140

Query, Key, Value Matrices

◼ The Attention module has 3 matrix pairs

◼ Query matrix Q and query weight matrix (WQ)

◼ Key matrix K and key weight matrix (WK)

◼ Value matrix V and value weight matrix (WV)

◼ At start of training, all weights are random. After
many backpropagations, the weights become
better.

141

Roadmap: Architecture -- Attention

◼ Overview

◼ Intuition

◼ Attention Score Calculation

◼ Matrix Flow

142

Query, Key, Value: Think of Querying
a Key-Value Database

◼ https://medium.com/mlearning-ai/demystifying-the-attention-
logic-of-transformers-unraveling-the-intuition-and-
implementation-fa6e3cf05a79

◼ Retrieving the value from a key-value pairs
database

◼ The user issues a query (search key, which is one
of the stored keys).

◼ The database searches all the stored keys,
calculating similarities between the query and
keys of the database.

◼ The database returns the values of the key most
similar to the query.

143

Analogy to Broadcasting a Question
and Answer (1/2)

◼ https://learnopencv.com/attention-mechanism-in-transformer-
neural-networks/

◼ Suppose the input sequence is “the quick
brown fox jumps over the lazy”

◼ Each word is represented as a query Q, key K,
and value V vector.

144

Analogy to Broadcasting a Question
and Answer (2/2)

◼ To model relevance of words in a sequence, we
let each word ask questions and receive
answers.

◼ A word (e.g., “fox”) broadcasts the same
question to ALL words in the sequence using
the ‘Query’ vector.

◼ Similarly, a word broadcasts the same answer
to all Query words using the ‘Key’ vector.

◼ A separate ‘Value’ vector is used to allow the
model to combine the outputs of Query and Key
vectors non-linearly.

145

Importance Matrix

◼ If we have a sequence of n words, we will have
n Query, n Key and n Value vectors.

◼ How does a word broadcast questions and
answers?

◼ We create an nxn Importance Matrix of n Query
vectors and n Key vectors.

◼ We take the dot product of all the n Query
vectors with all the n Key vectors.

◼ Each element of the matrix is the dot product
of the ith Query vector with the jth Key vector.
(shown in the next page).

146

Visualization of the Importance Matrix

147

the

quick

brown

fox

jumps

over

the

lazy

The quick brown fox jumps over the lazy

Roadmap: Architecture -- Attention

◼ Overview

◼ Intuition

◼ Attention Score Calculation

◼ Matrix Flow

148

Calculating Attention Scores (1/2)

◼ Pack the input tokens into a matrix X
◼ (note: The figure shows 2 tokens, with embedding size 4.)

◼ Calculate the Query, Key, and Value matrices by
multiplying X by the weight matrices WQ, WK, WV.

149

Calculating Attention Scores (2/2)

◼ The attention score is calculated by implementing the
following formula.

where Q is the Query matrix, K is the Key matrix,

V is the Value matrix; and
dk is the dimension of k

(k is embedding size ÷ number of heads)

150

Meaning of the Calculation

◼ For example, for the sentence “The ball is blue”,

◼ the row for the word blue will contain the
attention scores for blue with every other word,

◼ while blue is the Query word, and the other
words are the “Key·Value” words.

151

Multi-Head Attention

◼ Multi-Head Attention has multiple Attention heads
working in parallel.

◼ The Linear layer weights are partitioned uniformly
across the Attention heads.
◼ For expository purpose, we will assume the embedding

size= 512, and # of heads=8. Then each head will take a
(512 ÷ 8 =) 64-dimension embedding.

◼ This improves the performance of the Attention layer

◼ because each head can learn different patterns.

◼ Each of the matrices in each head is randomly
initialized.

152

Roadmap: Architecture -- Attention

◼ Overview

◼ Intuition

◼ Attention Score Calculation

◼ Matrix Flow

153

GPT Series Architecture Comparison

◼ https://360digitmg.com/blog/types-of-gpt-in-artificial-
intelligence

154

GPT-1 GPT-2 GPT-3

Parameters 117 Million 1.5 Billion 175 Billion

Decoder Layers 12 48 96

Context Window Size 512 1024 2048

Hidden Layer 768 1600 12288

Batch Size 64 512 3.2M

Matrix Flow Through the GPT-3
Decoder (1/3)

◼ https://dugas.ch/artificial_curiosity/GPT_architecture.html#:~:text=Of%2
0course%2C%20the%20embedding%20dimensions,a%2012288%20dim
ension%20embedding%20vector

◼ *Note: For simplicity, the batch size dimension is omitted
from the figure. (For GPT-3, the batch size is 3.2 million.)

155

Matrix Flow Through the GPT-3
Decoder (2/3)

156

Matrix Flow Through the GPT-3
Decoder (3/3)

◼ * Note: For simplicity, the normalization step is shown
just once.

157

Roadmap: Tutorial

◼ Introduction

◼ Training and Inference

◼ Performance

◼ Tokenization

◼ Input Embedding and Position Encoding

◼ Attention Concept

◼ Architecture: Overall

◼ Architecture: Attention

◼ Prognosis and Challenges

158

Prognosis: Positive

◼ LLMs show possibilities for adoption across many
sectors of the industry, education, economy and
society.

◼ LLMs hold much of the world’s knowledge, and
additional knowledge can be added to it.

◼ LLMs can interact with people not only in natural
languages, but also programming languages.

◼ However, everything LLMs generate must be fact-
checked.

159

Prognosis: Negative

◼ LLMs are platforms (like OS, DBMS), and there
will be the inevitable shakeout in a few years.

◼ Many tech companies have entered into the
fray, but it appears that not many are profitable.

◼ The challenge is to establish areas within
businesses that benefit significantly from LLMs.

160

R&D Opportunities

◼ Every topic examined in this Tutorial and more.
◼ Training, finetuning

◼ improve output quality, throughput

◼ reduce required computing resources

◼ improve benchmarks

◼ Prompt engineering

◼ Hallucination

◼ Improve Embedding, Position Encoding, Tokenization,
Attention

◼ Making sLLMs competitive to LLMs

◼ Build tools and applications for wide adoption

◼ Combat the Dark Side of LLM
161

Challenges

◼ There are serious concerns about how LLMs are
created, used, and abused.

◼ Three types of issues

◼ Issues inherent in LLMs

◼ Issues with the use/misuse of LLMs

◼ Issues for the LLM developers

162

Issues Inherent in LLMs

◼ Hallucination (and spread of wrong information)

◼ Violation of privacy

◼ Violation of intellectual property rights

◼ Toxic and biased results due to training data

◼ Temporal shifting (trained data becoming
obsolete)

◼ Specialization & diversity issues
◼ Models trained in specialized domains may not generalize

to new domains.

◼ Models trained in a diverse range of domains may not
perform as well in specific areas.

163

Issues with the Use/Misuse of LLMs

◼ Users blindly trusting the outputs of LLMs

◼ Criminal uses

◼ phishing, hacking, malware dissemination

◼ jail-breaking GPT, WormGPT, FraudGPT

◼ Plagiarism

◼ Consequences of integrating with APIs and other
software tools

◼ Job loss (?)

◼ StackOverflow layoffs, Hollywood writers’
strike,…

◼ may be offset by job creation

◼ may be just a historical inevitability 164

Issues for the LMM Developers

◼ Indecipherable results (non-explainable AI)

◼ There is a lack of understanding of how these
models work, why it exhibits certain behaviors, and
how it reaches specific conclusions.

◼ This lack of understanding makes it difficult to
troubleshoot issues or make improvements to the
models.

◼ Heavy use of resources

◼ Developers need large, high-quality datasets and
powerful computing resources to train and fine-tune
the models effectively.

◼ Human evaluation necessary for fine-tuning, which
can be time-consuming and expensive.

165

166

Closing

NVidia GPUs

167

GPT-3/GPT-4 (and Comparable LLMs) =

168

169

Thank You

